首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous investigations have implicated epoxygenase metabolites of arachidonic acid in the control of steroidogenesis in luteinised granulosa cells. The aim of this study was to assess this hypothesis further. We first determined the responsiveness of the cells in vitro to three different stimuli, namely luteinising hormone (LH), interleukin-1β (IL-1β), and dibutyryl cyclic AMP (db. cyclic AMP). Their effects were time-dependent, in that progesterone production from cells incubated for 3 days prior to stimulation responded strongly to db. cyclic AMP, to a lesser extent to LH and not to IL-1β. After 6 days of preincubation, all three stimuli increased progesterone production, and this preincubation period was used in the remainder of the study.

LH and IL-1β increased the intracellular levels of 5,6-epoxyeicosatrienoic acid (5,6-EpETrE) maximally after 10 min, whereas db. cyclic AMP had a more rapid effect within 2–5 min. There were no changes in levels of 14,15-epoxyeicosatrienoic acid (14,15-EpETrE), indicating that the effect was specific. Levels of dihydroxy derivatives of arachidonic acid were also increased, suggesting rapid metabolism of 5,6-EpETrE to inactive 5,6-DiHETrE. The effects of 5,6-EpETrE on progesterone production were transient, which may be due to the lability of this compound in solution, and limited passage into the granulosa-luteal cell cytoplasm. These results support a role for 5,6-EpETrE in the production of progesterone by human granulosa-luteal cells.  相似文献   


2.
Radiolabeled cis-(+-)-5,6-epoxyeicosatrienoic acid (5(6)-EpETrE) was incubated with a suspension of isolated human platelets in order to study its metabolic fate. The epoxide slowly disappeared from the suspension and was completely metabolized within 30 min. After extraction and analysis by reverse-phase high performance liquid chromatography, seven metabolites were found. Addition of either indomethacin (0.01 mM, cyclooxygenase inhibitor) or BW755C (0.1 mM, cyclooxygenase/lipoxygenase inhibitor) to the incubations blocked the formation of four and six metabolites, respectively, 1,2-Epoxy-3,3,3-trichloropropane (inhibitor of microsomal epoxide hydrolase) failed to inhibit the formation of 5,6-dihydroxyeicosatrienoic acid (5,6-DiHETrE), a hydrolysis product of the precursor 5(6)-EpETrE. The metabolites were characterized by UV spectroscopy, negative ion chemical ionization liquid chromatography/mass spectrometry, gas chromatography/mass spectrometry and, in one instance, coelution with synthetic standard. Three primary platelet metabolites were structurally determined to be 5,6-epoxy-12-hydroxyeicosatrienoic acid, 5,6-epoxy-12-hydroxyheptadecadienoic acid, and a unique bicyclic metabolite, 5-hydroxy-6,9-epoxy-thromboxane B1, which originated from intramolecular hydrolysis of 5,6-epoxythromboxane-B1. This thromboxane analog was partially separated into stereoisomers and coeluted with the racemic synthetic standard in gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. Three other metabolites were characterized as 5,6,12-trihydroxyeicosatrienoic acid, 5,6,12-trihydroxyheptadecadienoic acid, and 5,6-dihydroxythromboxane-B1, and resulted from the hydrolysis of the corresponding epoxides rather than from the metabolism of 5,6-DiHETrE. The latter was not metabolized by platelet cyclooxygenase or lipoxygenase. The biosynthesis of two cyclooxygenase metabolites indicated the formation of unstable 5,6-epoxythromboxane-A1 as an intermediate precursor. Platelet aggregation was not induced by 5(6)-EpETrE, although responsiveness to arachidonic acid was reduced following preincubation with the epoxide. The platelet metabolites of 5(6)-EpETrE might be useful in assessing its in vivo production in humans.  相似文献   

3.
The vasodilatory effect of epoxyeicosatrienoic acids (EpETrE), especially 5(6)-EpETrE, has been reported recently and a role of P-450-dependent arachidonic acid monooxygenase metabolites was suggested in vasoregulation. Accordingly, the presence of P-450-dependent arachidonic acid monooxygenase was investigated in rat aortic smooth muscle cells. Incubation of the microsomes of rat cultured aortic smooth muscle cells with 14C-arachidonic acid in the presence of 1 mM NADPH resulted in the formation of oxygenated metabolites. The metabolites were separated and purified by reverse phase and straight phase high performance liquid chromatography and identified by gas chromatography-mass spectrometry. Identified metabolites were 5(6)-EpETrE, 5,6-dihydroxyeicosatrienoic acid (DiHETrE), and 14,15-DiHETrE. The formation of these metabolites was totally dependent on the presence of NADPH, and inhibitors of cytochrome P-450-dependent enzymes, SKF-525A and metyrapone, reduced the formation of these metabolites. This is the first report that cytochrome P-450-dependent arachidonic acid metabolites, especially 5(6)-EpETrE and 14(15)-EpETrE, can be produced in the microsomes of vascular smooth muscle cells of rats.  相似文献   

4.
The major intracellular metabolites of arachidonic acid within human granulosa cells are an epoxy-eicosatrienoic acid (EET), and a dihydroxy-metabolite. The former which was present at higher levels, co-migrated with 5,6-EET on HPLC. Incubation of the cells with LH for 5 min stimulated the production of both 5,6-EET and the dihydroxy compound 2-4 fold. The production of other intracellular arachidonic acid metabolites was unaffected by stimulation with LH. These results suggest that one or both of these metabolites may have a role in steroidogenesis in human granulosa cells.  相似文献   

5.
The early events in IL-1-mediated activation of T cells were investigated in the murine T cell line, EL-4. Treatment of EL-4 cells with human rIL-1 beta resulted in a rapid increase in phospholipase A2 (PLA2) activity. PLA2 activity increased approximately fivefold within 4 min after exposure to IL-1. Synthesis of the phospholipase A2- activating protein (PLAP) and its mRNA were also increased within 4 min of IL-1 treatment and preceded the increase in PLA2 enzyme activity. The increases in PLA2 activity and PLAP protein and mRNA levels were all transient and declined to baseline within 10 min after the addition of IL-1. The changes in levels of PLAP as a function of time after IL-1 treatment were consistent with PLAP playing an important role in the regulation of PLA2 activity in this system. The consequence of the elevated PLA2 activity was examined by analysis of the fatty acids released from IL-1-treated cells. There was a 20-fold increase in the release of radioactivity from [14C]-linoleic acid labeled cells whereas there was very little change in the release of radioactivity from [14C]-arachidonic acid labeled cells in response to the addition of IL-1. The radioactivity released from [14C]-linoleic acid labeled cells was analyzed by HPLC; no conversion of radiolabeled linoleic into arachidonic acid was observed. In EL-4 cells, IL-1 potentiates PMA-mediated release of IL-2 at suboptimal concentrations of PMA. Linoleic acid also augmented PMA-induced IL-2 release from the EL-4 cells. This fatty acid was more than 10 times more effective than arachidonic acid in this regard. Furthermore, the addition of exogenous PLAP to EL-4 cells could substitute for IL-1 in the stimulation of IL-2 release. These results suggest that the IL-1 effects on T cells may be mediated at least in part through increased PLA2 activity due to increased synthesis of PLAP. Furthermore, the release of the unsaturated fatty acid linoleic acid or its metabolites may be of functional importance in IL-1-mediated IL-2 production by EL-4 cells.  相似文献   

6.
The effect of cAMP on prostaglandin production may depend on cell types. To clarify the relationship between PG and cAMP, we examined arachidonate's effects on PG synthesis and intracellular cAMP accumulation in monolayers of rat gastric mucosal cells. These cells produced PGE2, PGI2 and thromboxaneA2 (TXA2) in amounts of 316 +/- 18, 100 +/- 7 and 30 +/- 5 pg per 10(5) cells in 10 min, respectively, in response to 10 microM arachidonic acid (AA). The production of these PG, however, leveled off subsequently. Cells initially exposed to AA responded poorly to a subsequent stimulation by AA. AA simultaneously stimulated intracellular cAMP accumulation; this stimulatory effect on cAMP production was abolished by the pretreatment with indomethacin. Nevertheless, the pretreatments with dibutyryl cAMP (0.1-5 mM) did not alter the amount of subsequent AA-induced PGE2 production. Furthermore, the preincubation with 1mM isobutyl methyl xanthine also failed to affect PGE2 synthesis, while it increased intracellular cAMP accumulation. Our studies suggest AA stimulates intracellular cAMP formation in cultured gastric mucosal cells, linked with conversion of AA to cyclooxygenase metabolites, AA-induced PG production is limited in these cells, and it seems, however, unlikely that intracellular cAMP modulates AA metabolism to PG.  相似文献   

7.
Glioma C62B cells were incubated for 18 h with [1-14C]arachidonic acid. Most (80%) of the added [1-14C] arachidonic acid was taken into the intracellular pool; less than 1% of the intracellular [1-14C]arachidonic acid remained unesterified; the rest was present in glycerophospholipids. Acetylcholine stimulation of the prelabeled cells resulted in the rapid accumulation of free [1-14C]arachidonic acid, presumably liberated by hydrolysis from phospholipids. Labeled unesterified [1-14C]arachidonic acid peaked by 90 s and returned to basal levels by 5 min. Paralleling the transient increase of unesterified [1-14C]arachidonic acid were increases in level of radioactivity in an unidentified lipoxygenase metabolite of arachidonic acid and of radioactive phosphatidic acid. The release of arachidonic acid induced by acetylcholine or carbachol was blocked by muscarinic but not nicotinic receptor antagonists; adrenergic or histaminergic receptor agonists were ineffective at stimulating arachidonic acid liberation. In contrast to the transient effects of stimulation with cholinergic agonists, stimulation with the divalent cation ionophore A23187 resulted in a linear increase in the accumulation of liberated arachidonic acid for at least 1 h. Furthermore, the pattern of metabolites synthesized from arachidonic acid in response to ionophore stimulation was more complex than that observed following cholinergic stimulation and included also several metabolites derived from cyclooxygenase activity. We conclude that muscarinic receptor agonists rapidly induce specific changes in arachidonic acid and phosphatidic acid metabolism in a glioma cell line and suggest that similar responses may occur in glial cells and play a physiologically significant role in neural metabolism.  相似文献   

8.
[Arginine]vasopressin (AVP) stimulates maximal prostaglandin E2 production in cultured rat renal mesangial cells within 2 min. As early as 10s after addition of AVP (10(-6)M) a significant loss of radioactivity from phosphatidylinositol 4,5-bisphosphate but not from phosphatidylinositol 4-phosphate and phosphatidylinositol was observed in cells prelabelled with 32Pi. Cells labelled with [14C]arachidonic acid showed an increase of label in 1,2-diacylglycerol after 15 s and in phosphatidic acid after 30 s upon stimulation with AVP. Pretreatment of the cells with indomethacin (10(-5)M) did not abolish the effect of AVP on the increased labelling of phosphatidic acid.  相似文献   

9.
To examine steroid-induced biochemical alterations in the mast cell secretory process, rats were injected with intramuscular dexamethasone or saline for 4 days, and serosal mast cells and lung tissue were obtained from each group. Radioligand binding studies utilizing 1-[propyl-1,2-3H]dihydroalprenolol (3H-DHA) demonstrated a 23.1 +/- 0.8% increase in rat lung beta-adrenergic receptors in steroid-treated rats, but the mast cell beta-adrenergic receptors were unaffected. Neither resting mast cell cyclic adenosine 3':5'-monophosphate (cAMP) levels nor the degree of cAMP augmentation induced by isoproterenol were changed by steroid administration. Mast cells from rats treated with dexamethasone released only 48.6 +/- 8.9 and 58.8 +/- 6.0% of the beta-hexosaminidase released from saline-treated rat mast cells when sensitized with anti-dinitrophenyl (DNP) IgE and challenged with DNP-bovine serum albumin antigen or the calcium ionophore A23187, respectively. [3H]serotonin release in cells from steroid-treated rats was 41.8 +/- 7.9 and 87.6 +/- 2.6% of control release stimulated by antigen or A23187, respectively. [14C]arachidonic acid incorporation into mast cell phospholipids followed by antigen or A23187 challenge revealed that cells from dexamethasone-treated rats release 61.3 +/- 15.6% and 62.1 +/- 11.8% of labeled metabolites, respectively, compared to controls. The addition of exogenous arachidonic acid 5 min prior to antigen challenge caused a similar decrease in mediator release in cells from saline- and steroid-treated rats (36.7 +/- 6.1 and 38.4 +/- 0.9%, respectively). When arachidonic acid was added to sensitized cells after specific antigen, no significant changes in beta-hexosaminidase release were noted in either group. Chronic in vivo dexamethasone administration markedly decreases mast cell mediator release without changing resting cAMP levels. The release of arachidonic acid metabolites is reduced in steroid-treated cells, possibly through the inhibition of phospholipases. Exogenous arachidonic acid cannot overcome this inhibition, suggesting that an earlier step in phospholipid metabolism, perhaps involving phospholipase C, may be important.  相似文献   

10.
Mitotic activity in confluent cultures of human diploid fibroblasts was arrested by the reduction of the serum concentration of the incubation medium to 0.5% or by the addition of 0.5 mM 6-N, 2'-O-dibutyryl-adenosine 3':5'-cyclic monophosphate (db cAMP). Under either of these conditions, cultures maintained a constant cell number for 14 days; cultures continuously exposed to medium containing 10% serum doubled their cell number during this 14-day period. The protein cotent per cell decreased by 20% when cells were maintained with 0.5% serum whereas that of cells exposed to db cAMP remained constant. Ultrastructural studies revealed that cells exposed to db cAMP exhibited a morphology typical of cells cultures with 10% serum alone, whereas cells incubated with 0.5% serum showed the ultrastructural changes in mitochondria, endoplasmic reticulum and Golgi complex previously identified with low-serum arrest. Cellular adenosine 3':5'-cyclic monophosphate (cAMP) levels remained constant during the 7-day growth period in which confluency was attained, as well as during the 14-day arrested period with 0.5% serum. These results indicated that the mitotic inhibition induced by reducing the serum concentration of the incubation medium was not mediated by increased intracellular levels of cAMP and differed from that induced by the addition of exogenous db cAMP.  相似文献   

11.
《The Journal of cell biology》1995,130(5):1197-1205
Fibroblast contraction of stressed collagen matrices results in activation of a cAMP signal transduction pathway. This pathway involves influx of extracellular Ca2+ ions and increased production of arachidonic acid. We report that within 5 min after initiating contraction, a burst of phosphatidic acid release was detected. Phospholipase D was implicated in production of phosphatidic acid based on observation of a transphosphatidylation reaction in the presence of ethanol that resulted in formation of phosphatidylethanol at the expense of phosphatidic acid. Activation of phospholipase D required extracellular Ca2+ ions and was regulated by protein kinase C. Ethanol treatment of cells also inhibited by 60-70% contraction-dependent release of arachidonic acid and cAMP but had no effect on increased cAMP synthesis after addition of exogenous arachidonic acid or on phospholipase A2 activity measured in cell extracts. Moreover, other treatments that inhibited the burst of phosphatidic acid release after contraction--chelating extracellular Ca2+ or down-regulating protein kinase C--also blocked contraction activated cyclic AMP signaling. These results were consistent with the idea that phosphatidic acid production occurred upstream of arachidonic acid in the contraction- activated cAMP signaling pathway.  相似文献   

12.
Summary Mitotic activity in confluent cultures of human diploid fibroblasts was arrested by the reduction of the serum concentration of the incubation medium to 0.5% or by the addition of 0.5mm 6-N, 2′-O-dibutyryl-adenosine 3′:5′-cyclic monophosphate (db cAMP). Under either of these conditions, cultures maintained a constant cell number for 14 days; cultures continuously exposed to medium containing 10% serum doubled their cell number during this 14-day period. The protein content per cell decreased by 20% when cells were maintained with 0.5% serum whereas that of cells exposed to db cAMP remained constant. Ultrastructural studies revealed that cells exposed to db cAMP exhibited a morphology typical of cells cultured with 10% serum alone, whereas cells incubated with 0.5% serum showed the ultrastructural changes in mitochondria, endoplasmic reticulum and Golgi complex previously identified with low-serum arrest. Cellular adenosine 3′:5′-cyclic monophosphate (cAMP) levels remained constant during the 7-day growth period in which confluency was attained, as well as during the 14-day arrested period with 0.5% serum. These results indicated that the mitotic inhibition induced by reducing the serum concentration of the incubation medium was not mediated by increased intracellular levels of cAMP and differed from that induced by the addition of exogenous db cAMP.  相似文献   

13.
Rat basophilic leukemia (RBL-2H3) cells were cultured in medium containing [3H]arachidonic acid and labelling of the different lipid fractions was followed with time. After up to 4 h of culture, the label was found mostly in phosphatidylcholine. After 8 h, labelling of phosphatidylethanolamine gradually exceeded that of phosphatidylcholine, until at 24 h, approximate equilibrium labelling of the lipid fractions was attained and 45% of the label was found in phosphatidylethanolamine, 35% in phosphatidylcholine, 18% in the phosphatidylserine/inositide fraction and the remainder in the neutral lipid fraction. Stimulation of cells with A23187 after 30 min of labelling caused release of [3H]arachidonic acid which was accountable by a decrease in radioactivity of phosphatidylcholine, whereas stimulation of cells after 24 h of labelling caused the release of radioactive arachidonic acid, which was accompanied by a decrease of label in both phosphatidylcholine and phosphatidylethanolamine. Incubation of the labelled cells with phorbol 12-myristate 13-acetate prior to ionophore addition enhanced both the release of [3H]arachidonic acid and its metabolites and the decrease in label of the same phospholipids as those affected by ionophore alone. Under our conditions, the enhancement effects of phorbol ester were greatest after 2-5 min of preincubation, prior to ionophore addition. The results suggest that in basophilic leukemia cells, arachidonic acid release proceeds from several pools of phospholipids and that the activity of the phospholipase(s) involved is modulated by protein kinase C.  相似文献   

14.
Arachidonic acid metabolism is modulated during differentiation induced by 1alpha,25(OH)(2)D(3) in HL-60 cells. Antioxidants that affect arachidonic acid metabolism enhance this differentiation program. Ascorbate also enhances differentiation in 1alpha,25(OH)(2)D(3)-induced cells depending on the induction of cAMP. The aim of this work was to study if this cAMP rise depends on modulation of arachidonic acid metabolism by ascorbate. Cyclooxygenase inhibitors, indomethacin and aspirin, increased cAMP levels and also enhanced 1alpha,25(OH)(2)D(3)-induced differentiation in HL-60 cells. Ascorbate did not affect the release of arachidonic acid-derived metabolites but decreased the levels of TXB(2) and PGE(2), suggesting the inhibition of cyclooxygenase. On the other hand, free arachidonic acid increased both cAMP levels and differentiation in the absence or presence of 1alpha,25(OH)(2)D(3). Neither cyclooxygenase inhibitors nor ascorbate modified AA effect. Then, inhibition of cyclooxygenase activity by ascorbate could accumulate free arachidonic acid or other metabolites that increase cAMP levels and enhance differentiation in 1alpha,25(OH)(2)D(3)-induced HL-60 cells.  相似文献   

15.
The effect of cAMP on prostaglandin production may depend on cell types. To clarify the relationship between PG and cAMP, we examined arachidonate's effects on PG synthesis and intracellular cAMP accumulation in monolayers of rat gastric mucosal cells. These cells produced PGE2, PGI2 and thromboxaneA2 (TXA2) in amounts of 316±18, 100±7 and 30±5 pg per 105 cells in 10 min, respectively, in response to 10μM arachidonic acid (AA). The production of these PG, however, leveled off subsequently. Cells initially exposed to AA responded poorly to a subsequent stimulation by AA. AA simultaneously stimulated intracellular cAMP accumulation; this stimulatory effect on cAMP production was abolished by the pretreatment with indomethacin. Nevertheless, the pretreatments with dibutyryl cAMP (0.1–5mM) did not alter the amount of subsequent AA-induced PGE2 production. Furthermore, the preincubation with 1mM isobutyl methyl xanthine also failed to affect PGE2 synthesis, while it increased intracellular cAMP accumulation. Our studies suggest (1) AA stimulates intracellular cAMP formation in cultured gastric mucosal cells, linked with conversion of AA to cyclooxygenase metabolites, (2) AA-induced PG production is limited in these cells, and (3) it seems, however, unlikely that intracellular cAMP modulates AA metabolism to PG.  相似文献   

16.
Confluent cultures of porcine aortic endothelial cells were prelabeled with 1 microM [14C]arachidonic acid complexed to 1 microM bovine serum albumin. After washing, the cells were stimulated with 1 microM A23187 for time intervals between 30 s and 30 min. Cellular lipids were extracted and separated into major lipid classes and phospholipid subclasses. The external medium was analyzed for released radioactive eicosanoids. The time-course of total release of 14C radioactivity demonstrated a biphasic nature of A23187-induced changes in endothelial cell lipids. Early, from 30 s to 5 min, substantial losses of [14C]arachidonic acid from diacylphosphatidylethanolamine and phosphatidylinositol, as well as an abrupt increase in diacylphosphatidylcholine-associated radioactivity were observed. These initial changes coincided with the release of 14C-labeled cyclooxygenase products. Later changes (5-30 min) included a sustained progressive loss of 14C radioactivity from alkenyl (alk-1-enyl) acylphosphatidylethanolamine and diacylphosphatidylcholine. These later changes coincided with the elaboration of 14C-labeled lipoxygenase products. Although unequivocal assignments cannot be made, the data suggest that specific pools of arachidonic acid provide precursors for individual classes of eicosanoids.  相似文献   

17.
The metabolism of glucosamine in chick embryo fibroblasts was studied at different concentrations of the amino sugar added to the culture medium. In glucose-containing medium the well-known metabolites, UDP-N-acetylglucosamine, N-acetylglucosamine 6-phosphate and N-acetylglucosamine, are detectable after inhibition of glycosylation resulting from glucosamine treatment. Especially when the cells were infected with influenza virus, high intracellular concentrations of non-metabolized glucosamine are demonstrable in addition. Removal of the inhibitor from the medium results in release of the block of influenza virus glycoprotein glycosylation within 10 min. The onset of glycosylation is paralleled by a rapid reduction of intracellular levels of glucosamine without significant changes in the concentration of its metabolites. Furthermore, concentrations of GDP-mannose, UDP-glucose, and UDP-galactose remain constant for at least 30 min after reversal of the block. It is concluded that glucosamine as such exerts its effect on glycosylation, rather than one of its metabolites being responsible for this effect.  相似文献   

18.
Changes in intracellular and extracellular rat mast cell adenosine 3':5' monophosphate (cAMP) concentrations during stimulation of histamine release by 48/80 were studied. There was a rapid and progressive fall in intracellular cAMP beginning within 10 sec after the addition of 48/80. The lowest cAMP values were obtained at 10 min, with return to control levels by 30 min. The fall in cAMP was dose-related with progressive decreases in 10-min cAMP measurements as the 48/80 concentration was increased from 0.25 to 1.00 mug/ml. There was a graded increase in histamine release over the same concentration range. Attempts to demonstrate significant amounts of cAMP in the medium during 48/80 stimulation were unsuccessful, indicating that the changes in cAMP intracellularly are not due to altered cellular permeability. There was a general correlation between the ability of pharmacologic agents to sustain high intracellular levels of cAMP in the presence of 48/80, and inhibition of histamine release. Theophylline (20 mM) which increased cAMP levels 2- 3-fold prevented a detectable decrease in cAMP after 1 mug/ml 48/80 (measured at 10 min) and almost completely inhibited histamine release. Prostaglandin E1 (27 muM) also raised cAMP levels, decreased the 48/80-induced fall in cAMP (by 42%). Epinephrine increased mast cell cAMP levels, but did not prevent the subsequent 48/80-induced decrease in cAMP and did not inhibit histamine release. Carbamylcholine (1 nM), adenine (1 muM), and diazoxide (10 muM) lowered mast cell cAMP and potentiated 48/80 induced release. In view of previous studies from this laboratory indicating that 48/80 stimulates mast cell phosphodiesterase, it seems likely that the 48/80-induced fall in cAMP is due, at least in part, to increased cAMP destruction. Since agents which prevent the fall in cAMP inhibit histamine release, it is apparent that cAMP is an important part of the control mechanism of histamine secretion. On the other hand, it cannot be concluded that a decrease in cAMP alone is sufficient to produce a response since carbamylcholine, diazoxide, and adenine which lower cAMP do not alter histamine release unless 48/80 is also present.  相似文献   

19.
Cholera toxin (CT) stimulated the release of arachidonic acid (AA) from Chinese hamster ovary cells with no apparent lag period. CT-induced release of [3H]AA or its metabolites was dose dependent during a 4-hr period of toxin exposure with a minimum effective dose of 0.1 ng/ml. CT-induced release of [3H]AA metabolites began within 15 min of toxin addition and became maximal after approximately 5 hr. Neither CT-A subunit nor CT-B subunit alone caused [3H]AA release. Furthermore, [3H]AA release was not caused by addition of dibutyryl cAMP to the culture medium, indicating that the observed effect of CT on arachidonate metabolism appeared to be independent of cAMP. The effect of CT on AA metabolism is proposed as a possible mechanism leading to the synthesis of prostaglandin E and fluid secretion during cholera.  相似文献   

20.
We recently proposed that arachidonic acid serves as a second messenger within granulosa cells from the largest preovulatory follicle of the hen. The present studies were conducted to determine whether the inhibitory effects of arachidonic acid on LH-induced cAMP accumulation and on the ability of cells to convert 25-hydroxycholesterol to progesterone are mediated via the protein kinase C pathway. Furthermore, we determined the effects of arachidonic acid on plasminogen activator activity in granulosa cells. In the first experiment, the putative protein kinase C inhibitor, staurosporine, completely reversed the inhibitory effects of phorbol 12-myristate 13-acetate (PMA) on LH-promoted cAMP formation, but failed to overcome the inhibitory effects of arachidonic acid. Prolonged pretreatment (18 h) with 1.6 microM PMA depleted granulosa cells of both cytosolic and membrane-associated protein kinase C, and subsequently attenuated the inhibitory effects of PMA on LH-induced progesterone production; however, such depletion did not alter the inhibitory effects of phospholipase A2 (PLA2; an agent that increases intracellular levels of arachidonic acid). PMA, but not arachidonic acid, caused a rapid (within 2 min) translocation of protein kinase C from the cytosol to the membrane (a characteristic of agents that activate protein kinase C). Finally, both arachidonic acid and PLA2 inhibit plasminogen activator (PA) activity in a dose-dependent fashion, whereas activation of protein kinase C with PMA stimulates PA activity. Taken together, the data suggest that the effects of arachidonic acid in granulosa cells can occur independently of protein kinase C activation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号