首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficiency of oxidized endogenous plastoquinone-9 (PQ-9) as a non-photochemical quencher of chlorophyll fluorescence has been analyzed in spinach thylakoids and PS II membrane fragments isolated by Triton X-100 fractionation of grana stacks. The following results were obtained: (a) After subjection of PS II membrane fragments to ultrasonic treatment in the presence of PQ-9, the area over the induction curve of chlorophyll fluorescence owing to actinic cw light increases linearly with the PQ-9/PS II ratio in the reconstitution assay medium; (b) the difference of the maximum fluorescence levels, Fmax, of the induction curves, measured in the absence and presence of DCMU, is much more pronounced in PS II membrane fragments than in thylakoids; (c) the ratio Fmax(-DCMU)/Fmax(+DCMU) increases linearly with the content of oxidized PQ-9 that is varied in the thylakoids by reoxidation of the pool after preillumination and in PS II membrane fragments by the PQ-9/PS II ratio in the reconstitution assay; (d) the reconstitution procedure leads to tight binding of PQ-9 to PS II membrane fragments, and PQ-9 cannot be replaced by other quinones; (e) the fluorescence quenching by oxidized PQ-9 persists at low temperatures, and (f) oxidized PQ-9 preferentially affects the F695 of the fluorescence emission spectrum at 77 K. Based on the results of this study the oxidized PQ-9 is inferred to act as a non-photochemical quencher via a static mechanism. Possible implications for the nature of the quenching complex are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
C.P. Rijgersberg  J. Amesz 《BBA》1980,593(2):261-271
Fluorescence emission spectra of Anacystis nidulans, Porphyridium cruentum and Cyanidium caldarium, three phycobiliprotein-containing algae, were measured at temperatures between 4 and 120 K in the absence and in the presence of quinones as quenchers of chlorophyll fluorescence. In all species three major emission bands were observed in the chlorophyll a region, near 685 nm (F-685), 695 nm (F-695) and between 710 and 730 nm. Additional bands were observed at shorter wavelengths; these were preferentially excited by light absorbed by the phycobiliproteins and are presumably due to phycocyanins and allophycocyanins.

The amplitudes of F-685, F-695 and the long-wave emission showed a distinct increase upon cooling. For F-685 and F-695 the temperature dependence was similar to that earlier observed with spinach chloroplasts, for the long-wave emission it appeared to depend on the location of the emission bands, which was different for different species. All three bands were strongly quenched by quinones. These and other data suggest that the origin of these bands is the same as in higher plants, and that the fluorescence increase upon cooling can be explained by a lowering of the efficiency of energy transfer between chlorophyll molecules. It is concluded that at most a small percentage of the emission at 685 nm can be ascribed to allophycocyanin B, and that the efficiency of energy transfer between allophycocyanin B and chlorophyll a probably exceeds 99% both at 77 and 4 K. Experiments with isolated phycobilisomes suggest that energy transfer from allophycocyanin to allophycocyanin B occurs with an efficiency of about 90% at low temperature.

The effect of quenchers can be understood by the assumption that the quenching is caused by the formation of non-fluorescent traps in the bulk chlorophyll. Of three quinones tested, the strongest quenching was observed with dibromothymoquinone, which quenched F-685, F-695 and the long-wave emission approximately equally. Menadione and 1,4-naphthoquinone, however, preferentially quenched the long-wave bands, indicating a stronger interaction with Photosystem I than with Photosystem II chlorophylls.  相似文献   


3.
The Chl-protein complexes of three maize (Zea mays L.) mutants and one barley (Hordeum vulgare L.) mutant were analyzed using low temperature Chl fluorescence emissions spectroscopy and LDS-polyacrylamide gel electrophoresis. The maize mutants hcf-3, hcf-19, and hcf-114 all exhibited a high Chl fluorescence (hcf) phenotype indicating a disruption of the energy transfer within the photosynthetic apparatus. The mutations in each of these maize mutants affects Photosystem II. The barley mutant analyzed was the well characterized Chl b-less mutant chlorina-f2, which did not exhibit the hcf phenotype. Chlorina-f2 was used because no complete Chl b-less mutant of maize is available. Analysis of hcf-3, hcf-19, and hcf-114 revealed that in the absence of CP43, LHC II can still transfer excitation energy to CP47. These results suggest that in mutant membranes LHC II can interact with CP47 as well as CP43. This functional interaction of LHC II with CP47 may only occur in the absence of CP43, however, it is possible that LHC II is positioned in the thylakoid membranes in a manner which allows association with both CP43 and CP47.Abbreviations hcf high chlorophyll fluorescence - LDS lithium dodecyl sulfate - LHC II light-harvesting complex of Photosystem II - LHC I light-harvesting complex of Photosystem I - CPIa chlorophyll-protein complex consisting of LHC I and the PS I core complex - CPI chlorophyll-protein complex consisting of the PS I core complex - CP47 47 kDa chlorophyll-protein of the Photosystem II core - CP43 43 kDa chlorophyll-protein of the Photosystem II core - CP29 29 kDa chlorophyll-protein of Photosystem II - CP26 26 kDa chlorophyll-protein of Photosystem II - CP24 24 kDa chlorophyll-protein of Photosystem II - fp free pigments  相似文献   

4.
Photoacoustic spectroscopy was used to monitor photo synthetic electron transfer in native and immobilized thylakoid membranes. The photoacoustic parameter phi(r)' (the percentage of absorbed energy that is stored in photo chemical intermediates) and i(50) (the half-saturation modulated light intensity) were directly correlated to electron transfer rates. As previously shown, thylakoids immobilized in an albumin-glutaraldehyde matrix were more resistant to aging. The inhibitory effects of the immobilization procedure and of aging at 4 degrees C were detected as a decrease in i(50) values. In analogy with enzyme kinetic analysis, the effect could be characterized as a competitive type of inhibition. Photoacoustic measurements are performed in conditions similar to a working bioreactor cell with regards to the sample preparation.  相似文献   

5.
Energy trapping in Photosystem I (PS I) was studied by time-resolved fluorescence spectroscopy of PS II-deleted Chl b-minus thylakoid membranes isolated from site-directed mutants of Chlamydomonas reinhardtii with specific amino acid substitutions of a histidine ligand to P700. In vivo the fluorescence of the PS I core antenna in mutant thylakoids with His-656 of PsaB replaced by asparagine, serine or phenylalanine is characterized by an increase in the lifetime of the fast decay component ascribed to the energy trapping in PS I (25 ps in wild type PS I with intact histidine-656, 50 ps in the mutant PS I with asparagine-656 and 70 ps in the mutant PS I with phenylalanine-656). Assuming that the excitation dynamics in the PS I antenna are trap-limited, the increase in the trapping time suggests a decrease in the primary charge separation rate. Western blot analysis showed that the mutants accumulate significantly less PS I than wild type. Spectroscopically, the mutations lead to a decrease in relative quantum yield of the trapping in the PS I core and increase in relative quantum yield of the fluorescence decay phase ascribed to uncoupled chlorophyll–protein complexes which suggests that improper assembly of PS I and LHC in the mutant thylakoids may result in energy uncoupling in PS I.  相似文献   

6.
Solubilisation of thylakoid membranes from young leaves of Pisum sativum in the presence of Triton X-100 resulted in an almost complete loss of quenching of light-harvesting chlorophyll-protein (LHCP) fluorescence, as measured at 77°K. There were concomitant changes in the kinetics of light-saturation curves of electron transport from 2,6-dichlorophenolindophenol/ascorbate to methyl viologen. These effects were accompenied by a physical dissociation of LHCP polypeptides from photosystem I (PSI) and photosystem II (PSII) polypeptides, as determined by polyacrylamide gel-electrophoresis. Detergent-dialysis in the presence of exogenous purified galactolipids, about 80% of which were linoleoyl molecular species, only partially reversed these effects. However, detergent-dialysis using the phospholipids, phosphatidylglycerol and phosphatidylcholine, resulted in the substantial restoration of 77°K fluorescence quenching and the restoration of both emission spectra and electron transport kinetics of both Photosystems I and II that were typical of native membranes.Abbreviations Chl chlorophyll - DCPIP 2,6-dichlorophenolindophenol - DGD digalactosyldiacylglycerol - LHCP light-harvesting chlorophyll-protein - MGD monogalactosyldiacylglycerol - PCi phosphatidylcholine — Sigma grade NS - PCii -oleoyl, -palmitoyl phosphalidylcholine - PG phosphatidylglycerol - PSI photosystem I - PSII photosystem II  相似文献   

7.
Fluorescence quenching by oxygen of cationic [pyrene-(CH2) n N(CH3) 3 + ;n=1, 4, and 11] and anionic [pyrene-(CH2) n CO 2 ,n=3, 8, 11, and 15] probes was investigated in erythrocyte plasma membranes (leaky) in order to assess the ability of oxygen molecules to interact with solutes located at different positions in the membrane. The pseudounimolecular quenching rate constants measured increase, both for cationic and anionic probes, whenn increases. These results are interpreted in terms of an increased oxygen solubility toward the center of the membrane interior, and imply that lateral diffusion contributes more than transverse diffusion to total oxygen mobility. For all of the probes considered, quenching rates increase whenn-alkanols are added. The effect observed increases whenn decreases and when the size of then-alkanol alkyl chain increases. Arrhenius-type plots for the quenching rate constants show noticeable downward curvatures. Average (0–40°C) activation energies are 6 kcal/mol.Abbreviations EPM erythrocyte plasma membrane - PMTMA (1-pyrenyl)methyltrimethyl-ammonium - PBTMA 4-(1-pyrenyl)butyltrimethylammonium - PUTMA 11-(1-pyrenyl)-undecyltrimethylammonium - PB 4-(1-pyrenyl)butanoate - PN 9-(1-pyrenyl)nonanoate - PD 12-(1-pyrenyl)dodecanoate - PHD 16-(1-pyrenyl)hexadecnoate  相似文献   

8.
Proteins have evolved to fold and function within a cellular environment that is characterized by high macromolecular content. The earliest step of protein folding represents intrachain contact formation of amino acid residues within an unfolded polypeptide chain. It has been proposed that macromolecular crowding can have significant effects on rates and equilibria of biomolecular processes. However, the kinetic consequences on intrachain diffusion of polypeptides have not been tested experimentally, yet. Here, we demonstrate that selective fluorescence quenching of the oxazine fluorophore MR121 by the amino acid tryptophan (Trp) in combination with fast fluorescence correlation spectroscopy (FCS) can be used to monitor end-to-end contact formation rates of unfolded polypeptide chains. MR121 and Trp were incorporated at the terminal ends of polypeptides consisting of repetitive units of glycine (G) and serine (S) residues. End-to-end contact formation and dissociation result in "off" and "on" switching of MR121 fluorescence and underlying kinetics can be revealed in FCS experiments with nanosecond time resolution. We revisit previous experimental studies concerning the dependence of end-to-end contact formation rates on polypeptide chain length, showing that kinetics can be described by Gaussian chain theory. We further investigate effects of solvent viscosity and temperature on contact formation rates demonstrating that intrachain diffusion represents a purely diffusive, entropy-controlled process. Finally, we study the influence of macromolecular crowding on polypeptide chain dynamics. The data presented demonstrate that intrachain diffusion is fast in spite of hindered diffusion caused by repulsive interactions with macromolecules. Findings can be explained by effects of excluded volume reducing chain entropy and therefore accelerating the loop search process. Our results suggest that within a cellular environment the early formation of structural elements in unfolded proteins can still proceed quite efficiently in spite of hindered diffusion caused by high macromolecular content.  相似文献   

9.
We have examined the fluorescence intensity decays of oxytocin and [Arg8]-vasopressin resulting from the single tyrosyl residue in each peptide, and the intensity decay of the Asu 1,6-analogues in which the disulfide bridge is substituted by a CH2-CH2 bridge. Viscosity-dependent steady state and intensity decay measurements indicated that fluorescence resonance energy transfer (FRET) from tyrosyl phenol to the disulfide bridge is responsible for the decrease in fluorescence relative to the Asu-analogues. The frequency-domain phase and modulation data for the tyrosyl donor were interpreted in terms of fluorescence resonance energy transfer (FRET) to the weakly absorbing disulfide bridge and a distribution of donor-to-acceptor distances. Energy transfer efficiencies were determined from both time-resolved and steady-state measurements. Fitting the frequency-domain phase and modulation data to a Gaussian distance distribution indicated that the average inter-chromophoric distance (Rav) is similar in both compounds, Rav=7.94 Å for oxytocin and Rav = 8.00 Å for vasopressin. However, the width of the distance distribution is narrower for vasopression (hw =2.80 Å) than for oxytocin (hw =3.58 Å), which is consistent with restriction of the tyrosine phenol motion due to its stacking with the Phe3 side chain of vasopressin. Finally, the recovered distance distribution functions are compared with histograms describing the distance between the chromophores during the course of long, in vacuo, molecular dynamics runs using the computer program CHARMm and the QUANTA 3.0 parameters.Abbreviations AVP [Arg8]-vasopressin - FRET fluorescence resonance energy transfer - FD frequency-domain - D donor - A acceptor - DTT dithiothreitol Correspondence to: J. R. Lakowicz  相似文献   

10.
The photosynthetic energy storage yield of uncoupled thylakoid membranes was monitored by photoacoustic spectroscopy at various measuring beam intensities. The energy storage rate as evaluated by the half-saturation measuring beam intensity (i50) was inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea, by heat inactivation or by artificial electron acceptors specific for photosystem I or photosystem II; and was activated by electron donors to photosystem I. The reactions involving both photosystems were all characterized by a similar maximal energy storage yield of 16±2 percent. The data could be interpreted if we assumed that the energy storage elicited by the photosystems at 35 Hz is detected at the level of the plastoquinone pool.Abbreviations PS photosystem - Tes N-Tris [hydroxymethl] methyl-2-aminoethanesulfonic acid - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - FeCN potassium ferricyanide - DCBQ 2,5-dichlorobenzoquinone - TMPD N,N,N-tetramethyl-p-phenilenediamine  相似文献   

11.
An efficient excitation energy transfer from tryptophan residues of intrinsic membrane proteins to an extrinsic fluorescent probe (diphenylhexatriene) has been demonstrated in rat erythrocyte ghosts. To correlate this transfer with the localization of the probe, a model system has been investigated. It consists of peptides containing lysine and tryptophan residues bound to negatively charged phosphatidylserine vesicles. Absorption and fluorescence spectroscopies were used to follow peptide binding and diphenylhexatriene incorporation. Peptide binding is accompanied by a blue shift of the tryptophan fluorescence together with an increase of the quantum yield and of the fluorescence decay time. An experimental Föster critical distance value of 4.0 nm was found for energy transfer from tryptophan residues of peptides to diphenylhexatriene which approaches the range of calculated values (3.1–3.7 nm) using a two-dimensional model. These results demonstrate that efficient energy transfer can occur from tryptophan residues of intrinsic proteins to diphenylhexatriene without any interaction between diphenylhexatriene and proteins in biological membranes.  相似文献   

12.
Exposure of isolated spinach thylakoids to high intensity illumination (photoinhibition) results in the well-characterized impairment of Photosystem II electron transport, followed by degradation of the D1 reaction centre protein. In the present study we demonstrate that this process is accompanied by singlet oxygen production. Singlet oxygen was detected by EPR spectroscopy, following the formation of stable nitroxide radicals from the trapping of singlet oxygen with a sterically hindered amine TEMP (2,2,6,6-tetramethylpiperidine). There was no detectable singlet oxygen production during anaerob photoinhibition or in the presence of sodium-azide. Comparing the kinetics of the loss of PS II function and D1 protein with that of singlet oxygen trapping suggests that singlet oxygen itself or its radical product initiates the degradation of D1.Abbreviations HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulphonle acid - PS Photosystem - TEMP 2,2,6,6-tetramethylpiperidine - TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl  相似文献   

13.
Fluorescence quenching by a series of spin-labelled fatty acids is used to map the transverse disposition of tryptophan residues in bacteriorhodopsin (the sole protein in the purple membranes of Halobacterium halobium). A new method of data analysis is employed which takes into account differences in the uptake of the quenchers into the membrane. Energy transfer from tryptophan to a set of n-(9-anthroyloxy) fatty acids is used as a second technique to confirm the transverse map of tryptophan residues revealed by the quenching experiments. The relative efficiencies of quenching and energy transfer obtained experimentally are compared with those predicted on the basis of current models of bacteriorhodopsin structure. Most of the tryptophan fluorescence is located near the surface of the purple membrane. When the retinal chromophore of bacteriorhodopsin is removed, tryptophan residues deep in the membrane become fluorescent. These results indicate that the deeper residues transfer their energy to retinal in the native membrane. The retinal moiety is therefore located deep within the membrane rather than at the membrane surface.  相似文献   

14.
The pregnane X receptor (PXR) regulates the metabolism and excretion of xenobiotics and endobiotics by regulating the expression of drug-metabolizing enzymes and transporters. The unique structure of PXR allows the binding of many drugs and drug leads to it, possibly causing undesired drug–drug interactions. Therefore, it is crucial to evaluate whether lead compounds bind to PXR. Fluorescence-based assays are preferred because of their sensitivity and nonradioactive nature. One fluorescent PXR probe is currently commercially available; however, because its chemical structure is not publicly disclosed, it is not optimal for studying ligand–PXR interactions. Here we report the characterization of BODIPY FL–vinblastine, generated by labeling vinblastine with the fluorophore 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY FL), as a high-affinity ligand for human PXR with a Kd value of 673 nM. We provide evidence that BODIPY FL–vinblastine is a unique chemical entity different from either vinblastine or the fluorophore BODIPY FL in its function as a high-affinity human PXR ligand. We describe a BODIPY FL–vinblastine-based human PXR time-resolved fluorescence resonance energy transfer assay, which was used to successfully test a panel of human PXR ligands. The BODIPY FL–vinblastine-based biochemical assay is suitable for high-throughput screening to evaluate whether lead compounds bind to PXR.  相似文献   

15.
A series of spectroscopic measurements were performed on membrane fractions and detergent-solubilized complexes from the green sulfur bacterium (GSB) Chlorobaculum (Cba.) tepidum. The excitation migration through the entire GSB photosynthetic apparatus cannot be observed upon excitation of membranes in the chlorosome region at 77?K. In order to observe energy transfer from the Fenna-Matthews-Olson (FMO) protein to the reaction center (RC), FMO was directly excited at ~800?nm in transient absorption experiments. However, interpretation of the results is complicated by the spectral overlap between FMO and the RC. The availability of the Y16F FMO mutant, whose absorption spectrum is drastically different from that of the WT, has enabled the selection of spectral regions where either only FMO or the RC contributes. The application of a directed kinetic modeling approach, or target analysis, revealed the various decay and energy transfer pathways within the pigment-protein complexes. The calculated FMO-to-RC excitation energy transfer efficiencies are approximately 25% and 48% for the Y16F and WT samples, respectively.  相似文献   

16.
The fluorescence decay spectra and the excitation energy transfer from the phycobiliproteins (PBP) to the chlorophyll-antennae of intact cells of the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina were investigated at 298 and 77 K by time- and wavelength-correlated single photon counting fluorescence spectroscopy. At 298 K it was found that (i) the fluorescence dynamics in A. marina is characterized by two emission peaks located at about 650 and 725 nm, (ii) the intensity of the 650 nm fluorescence depends strongly on the excitation wavelength, being high upon excitation of phycobiliprotein (PBP) at 632 nm but virtually absent upon excitation of chlorophyll at 430 nm, (iii) the 650 nm fluorescence band decayed predominantly with a lifetime of 70 +/- 20 ps, (iv) the 725 nm fluorescence, which was observed independent of the excitation wavelength, can be described by a three-exponential decay kinetics with lifetimes depending on the open or the closed state (F(0) or F(m)) of the reaction centre of Photosystem II (PS II). Based on the results of this study, it is inferred that the excitation energy transfer from phycobiliproteins to Chl d of PS II in A. marina occurs with a time constant of about 70 ps, which is about three times faster than the energy transfer from the phycobilisomes to PS II in the Chl a-containing cyanobacterium Synechococcus 6301. A similar fast PBP to Chl d excitation energy transfer was also observed at 77 K. At 77 K a small long-lived fluorescence decay component with a lifetime of 14 ns was observed in the 640-700 nm spectral range. However, it has a rather featureless spectrum, not typical for Chl a, and was only observed upon excitation at 400 nm but not upon excitation at 632 and 654 nm. Thus, this long-lived fluorescence component cannot be used as an indicator that the primary PS II donor of Acaryochloris marina contains Chl a.  相似文献   

17.
The effect of high salt concentration on photosystem II (PS II) electron transport rates and chlorophyll a fluorescence induction kinetics was investigated in coupled and uncoupled spinach thylakoid membranes. With increase in salt concentration, the rates of electron transport mediated by PS II and the F v/F m ratio were affected more in uncoupled thylakoids as compared to coupled thylakoid membranes. The uncoupled thylakoid membranes seemed to behave like coupled thylakoid membranes at high NaCl concentration (∼1 M). On increasing the salt concentration, the uncoupler was found to be less effective and Na+ probably worked as a coupling enhancer or uncoupling suppressor. We suggest that positive charge of Na+ mimics the function of positive charge of H+ in the thylakoid lumen in causing coupled state. The function of NaCl (monovalent cation) could be carried out by even lower concentration of Ca2+ (divalent cation) or Al3+ (trivalent cation). We conclude that this function of NaCl as coupling enhancer is not specific, and in general a positive charge is required for causing coupling in uncoupled thylakoid membranes. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 6, pp. 761–767.  相似文献   

18.
Tissue-specific effects of low growth temperature on maize chloroplast thylakoid protein accumulation were analysed using immunocytology. Sections of leaves from plants grown at 25 and 14°C were probed with antibodies to specific chloroplast thylakoid proteins from the four major protein multisubunit complexes of the thylakoid membrane followed by fluorescein-conjugated goat anti-rabbit antibodies. At a normal growth temperature of 25°C, the 32 kDa D1 protein of the photosystem II reaction centre and the 33 kDa protein of the extrinsic oxygen-evolving complex of photosystem II are both accumulated to a greater degree in the mesophyll than in the bundle sheath chloroplasts. In contrast, subunit II of photosystem I, cytochrome f and the α- and β-subunits of ATP synthetase are predominant in the bundle sheath thylakoids at 25°C. A striking difference between the 25°C-grown and the 14°C-grown leaf tissue was the presence in the latter of (20–30%) cells whose chloroplasts apparently completely lack several of the thylakoid proteins. In plants grown at 14°C, the accumulation of the 33 kDa protein of the extrinsic oxygen-evolving complex of photosystem II was apparently unchanged, but other thylakoid proteins showed a significant reduction. The uneven distribution of proteins between the bundle sheath and mesophyll chloroplasts observed at 25°C was also maintained at 14°C. Reduction in the fluorescence at 14°C was manifested either as an overall reduction in the diffuse fluorescence across the chloroplast profiles or less frequently as a reduction to small discrete bodies of intense fluorescence. The significance of these results to low-temperature-induced reduction in the photosynthetic productivity of maize is discussed.  相似文献   

19.
Antenna components in the energy transfer processes of a green photosynthetic bacterium Chloroflexus aurantiacus were spectrally investigated by time-resolved fluorescence spectroscopy at −196°C on intact cells. Besides major antenna components so far reported, three minor components were resolved; those were Bchl c located at 785 nm, the baseplate Bchl a at 819 nm and Bchl a in the B808-866 complex at 910 nm. The last component was assigned to a longer wavelength antenna closely associated with a reaction center. An additional Bchl c fluorescence component was kinetically suggested to be present, which can be an energy donor to a major Bchl c. Presence of these minor components was signified in terms of (1) increase in the spectral overlap integral and (2) adjustment of the direction of dipole moments in the energy transfer sequence of intact cells.  相似文献   

20.
A fluorometric assay was used to study the DNA unwinding kinetics induced by Escherichiacoli RecQ helicase.This assay was based on fluorescence resonance energy transfer and carried out onstopped-flow,in which DNA unwinding was monitored by fluorescence emission enhancement of fluoresceinresulting from helicase-catalyzed DNA unwinding.By this method,we determined the DNA unwinding rateof RecQ at different enzyme concentrations.We also studied the dependences of DNA unwinding magnitudeand rate on magnesium ion concentration.We showed that this method could be used to determine thepolarity of DNA unwinding.This assay should greatly facilitate further study of the mechanism for RecQ-catalyzed DNA unwinding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号