首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The kinetics of the reduction by aniline and a series of substituted anilines of a peroxidatically active intermediate, formed by oxidation of deuteroferriheme with hydrogen peroxide, have been studied by stopped-flow spectrophotometry. The reaction with aniline was first order with respect to [intermediate] and showed first-order saturation kinetics with respect to [aniline]. The second-order rate constant was 2.0 ± 0.2 × 105 M?1 sec?1 at 25°C (independent of pH in the range 6.60–9.68) compared with the value of 2.4 × 105 M?1 sec?1 for the reaction of aniline with horseradish peroxidase Compound I. The effect of aniline substituents upon reactivity towards the heme intermediate closely paralled those reported for reaction with the enzymic intermediate. Anilines bearing electron-donating substituents reacted more rapidly and those bearing electron-withdrawing substituents more slowly than the unsubstituted amine. The rate constants for the heme intermediate reactions (kdfh)found to be related to those for the enzymic reactions (khrp) by the equation:log kDFH= 0.65log kHRP+ 1.96 with a correlation coefficient of 0. 98.  相似文献   

2.
Stopped-flow kinetic studies of the formation of ferrioxamine B were performed. Formation of the complex follows the rate law
where Ka is the acid dissociation constant of the iron(III) aquo species in 0.1 M formate buffer. At 25°C k1 = 3.94 × 102M?1 sec?1, k2Ka = 1.18 × 10?1 sec?1, k3 = 3.6 × 10?1 sec?1. Activation parameters for k1 are ΔH = 11.7 kcal mole?1 and ΔS = ?8 cal K?1 mole?1. An associative mechanism is proposed. Attachment of the first chelate ring is the slow step and favorably positions the second chelate ring for attachment. Coordination of two chelate rings favorably positions the third chelate ring for attachment. These results are compared to kinetics of formation of model complexes and to a previous study of the formation of ferrioxamine B in which attachment of the third chelate ring was proposed as the slow step  相似文献   

3.
The rate of formation of peroxidatically active reaction intermediate(s) via oxidation of the iron(III)-porphyrin complex, deuteroferriheme, with hydrogen peroxide decreases with increasing borate content of mixed borate-carbonate buffer solutions. Studies at pH = 9.25 in 0.035 M borate buffer and 0.035 M carbonate buffer suggest borate to function as an uncompetitive inhibitor. A comparison of slopes and intercepts of double reciprocal plots for inhibited and uninhbited reactions allows calculation of selected parameters for the deuteroferriheme-H2O2 reaction at pH = 9.25 in terms of a typical enzymatic stoichiometric mechanism for heme activity. This includes the Michaelis constant (Km = 8.1 × 10?5 M) and the first-order rate constant for conversion of heme-substrate complex to intermediate(s) (k3 = 7.4 sec?1). A tentative mechanistic model involving reversible interaction of borate inhibitor with heme-substrate complex is considered, and pseudo-first-order rate constants calculated on the basis of this scheme are in reasonable agreement with those obtained experimentally. It is suggested that comparable inhibitory action may be responsible for some previously reported cases of decreased catalase enzyme activity in borate buffer solutions  相似文献   

4.
The electron transfer reactions of horse heart cytochrome c with a series of amino acid-pentacyanoferrate(II) complexes have been studied by the stopped-flow technique, at 25°C, μ = 0.100, pH 7 (phosphate buffer). A second-order behavior was observed in the case of the Fe(CN)5 (histidine)3? complex, with k = 2.8 x 105 M?1 sec?1. For the Fe(CN)5 (alanine)4? and Fe(CN)5(L-glutamate)5? complexes, only a minor deviation of the second-order behavior, close to the experimental error (k = 3.2 × 105 and 1.6 x 105 M?1 sec?1, respectively) was noted at high concentrations of the reactants (e.g., 6 × 10?4 M). The results are in accord with recent work on the Fe(CN)64?/cytochrome c system demonstrating weak association of the reactants. The calculated self-exchange rate constants including electrostatic interactions for the imidazole,L -histidine, 4-aminopyridine, glycinate, β-alaninate, andL-glutamate pentacyanoferrate(II) complexes were 3.3 × 105, 3.3 × 105, 2.8 × 106,4.1 × 102,5.5 × 102, and 6.0 M?1 sec?1, respectively. Marcus theory calculations for the cytochrome c reactions were interpreted in terms of two nonequivalent binding sites for the complexes, with the metalloprotein self-exchange rate constants varying from 104 M?1 sec?1 (histidine, imidazole, and 4-aminopyridine complexes) to 106 M?1 sec ?1 (glycinate, β-alaninate, and L-glutamate complexes).  相似文献   

5.
Kinetic studies of the reduction of ferrioxamine B (Fe(Hdesf)+) by Cr(H2O)62+, V(H2O)62+, and dithionite have been performed. For Cr(H2O)62+ and V(H2O)62+, the rate is ?d[Fe(Hdesf)+]/dt = k[Fe(Hdesf)+][M2+]. For Cr(H2O)62+, k = 1.19 × 104 M?1 sec?1 at 25°C and μ = 0.4 M, and k is independent of pH from 2.6 to 3.5. For V(H2O)62+, k = 6.30 × 102 M?1 sec?1 at 25°C, μ = 1.0 M, and pH = 2.2. The rate is nearly independent of pH from 2.2 to 4.0. For Cr(H2O)62+ and V(H2O)62+, the activation parameters are ΔH = 8.2 kcal mol?1, ΔS ?12 eu and ΔH = 1.7 kcal mol?1, ΔS = ?40 eu (at pH 2.2) respectively. Reduction by Cr(H2O)62+ is inner-sphere, while reduction by V(H2O)62+ is outer-sphere. Reduction by dithionite follows the rate law ?d[Fe(Hdesf)+]/dt =kK12[Fe(Hdesf)+][S2O42?]12 where K is the equilibrium constant for dissociation of S2O42? into SO2? radicals. The value of k at 25°C and μ = 0.5 is 2.7 × 103 M?1 sec?1 at pH 5.8, 3.5 × 103 M?1 sec?1 at pH 6.8, and 4.6 × 103 M?1 sec?1 at pH 7.8, and ΔH = 6.8 kcal mol?1 and ΔS = ?19 eu at pH 7.8.  相似文献   

6.
The kinetics of the binding of cyanide to ferric chloroperoxidase have been studied at 25°C and ionic strength 0.11 M using a stopped-flow apparatus. The dissociation constant (KCN) of the peroxidase-cyanide complex and both forward (k+) and reverse (k?) rate constants are independent of the H+ concentration over the pH range 2.7 to 7.1. The values obtained are kcn = (9.5 ± 1.0) × 10-5 M, k+. = (5.2 ± 0.5) × 104 M?1 sec?1 and k- = (5.0± 1.4) sec-1. In the presence of 0 06 M potassium nitrate the affinity of cyanide for chloroperoxidase decreases due to the inhibition of the forward reaction. The dissociation rate is not affected. The nitrate anion exerts its influence by binding to a protonated form of the enzyme, whereas the cyanide binds to the unprotonated form. Binding of nitrate results in an apparent shift towards higher pKa values of the ionization of a crucial heme-linked acid group. Hence the influence of this group can be detected in the accessible pH range. Extrapolation to zero nitrate concentration yields a value of 3.1±0.3 for the pKa of the heme-linked acid group.  相似文献   

7.
Oxymyoglobin reacts with imidazole, substituted imidazoles, and hydroquinone to give metmyoglobin. The kinetics of these reactions have been studied. The rates are first order in both reactants, and second-order rate constants are reported. At pH 8.2, k1 for imidazole is 2.5 ± 0.3 × 10?3 M?1 sec?1 and for hydroquinone is 4 ± 0.4 × 10?1 M?1 sec?1. The rates are independent of pH for imidazole but increase rapidly with pH for hydroquinone. The mechanism for all these reactions is thought to involve the two-electron reduction of molecular oxygen to peroxide with concurrent oxidation of both the protein and the reactant. An analogous mechanism has been suggested previously [1] for the reaction of oxyhemoglobin with hydroquinone. It has previously been shown [6] that imidazole can mediate the transfer of electrons to heme proteins by forming a transient reduced radical. The present results indicate that it can also form a transient oxidized radical under mild conditions. This dual capability may be important in biological electron-transfer processes.  相似文献   

8.
9.
Association of a sulfated galactosyl ceramide, sulfatide, with the viral envelope glycoprotein hemagglutinin (HA) delivered to the cell surface is required for influenza A virus (IAV) replication through efficient translocation of the newly synthesized viral nucleoprotein from the nucleus to the cytoplasm. To determine whether the ectodomain of HA can bind to sulfatide, a secreted-type HA (sHA), in which the transmembrane region and cytoplasmic tail were deleted, was generated by using a baculovirus expression system. The receptor binding ability and antigenic structure of sHA were evaluated by a hemagglutination assay, solid-phase binding assay and hemagglutination inhibition assay. sHA showed subtype-specific antigenicity and binding ability to both sulfatide and gangliosides. Kinetics of sHA binding to sulfatide and GD1a was demonstrated by quartz crystal microbalance (QCM) analysis. QCM analysis showed that the sHA bound with the association rate constant (k on) of 1.41?×?104 M?1 sec?1, dissociation rate constant (k off) of 2.03?×?10?4 sec?1 and K d of 1.44?×?10?8 M to sulfatide immobilized on a sensor chip. The k off values of sHA were similar for sulfatide and GD1a, whereas the k on value of sHA binding to sulfatide was 2.56-times lower than that of sHA binding to GD1a. The results indicate that sulfatide directly binds to the ectodomain of HA with high affinity.  相似文献   

10.
The reactions of copper(II)-ahphatic polyamine complexes with cysteine, cysteine methyl ester, penicillamine. and glutathione have been investigated, with the goal of understanding the relationship between RS?-Cu(II) adduct structure and preferred redox decay pathway. Considerable mechanistic flexibility exists within this class of mercapto ammo acid oxidations, as changes in the rate law could be induced by modest variations in reductant concentration (at fixed [Cu(II)]o), pH, and the structure of the redox partners. With excess cysteine present at 25°C, pH 5 0, I = 0 2 M (NaOAc), decay of 1:1 cys-S?-Cu(II) transient adducts was found to be first order in both cys-SH and transient. Second-order rate constants characteristic of Cu(dien)2+ (6 1 × 103M?1sec?1), Cu(Me5dien)2+ (2.7 × 103M?1 sec?1), Cu(en)22+ (2.1 × 103M?1 sec?1), and Cu(dien)22+ (4.7 × 103 M?1 sec ?1) are remarkably similar, considering substantial differences in the composition and geometry of the oxidant first coordination sphere. A mechanism involving attack of cysteine on the coordinated sulfur atom of the transient, giving a disulfide anion radical intermediate, is proposed to account for these results Moderate reactivity decreases in the cysteine-Cu(dien)2+, Cu(Me5dien)2+ reactions with increasing [H+] (pH 4–6) reflect partial protonation of the polyamine ligands. A very different rate law, second order in the RS?-Cu(II) transient and approximately zeroth order in mercaptan, applies in the pH 5.0 oxidations of cysteine methyl ester, penicillamine, and glutathione by Cu(dien)2+ and Cu(Me5dien)2+. This behavior suggests the mtermediacy of di-μ-mercapto-bridged binuclear Cu(II) species, in which a concerted two-electron change yields the disulfide and Cu(I) products. Similar hydroxo-bridged intermediates are proposed to account for the transition from first- to second-order transient dependence in cysteine oxidations by Cu(dien)2+ and Cu(Me5dien)2+ as the pH is increased from 5 to 7. Yet another rate law, second order in transient and first order in cysteine, applies in the pH 5.0 oxidation of cysteine by Cu(Me6tren)2+ (k(25°C) 7.5 × 107 M?2 sec?1, I = 0.2 M). Steric rigidity of this trigonal bipyramidal oxidant evidently protects the coordinated sulfur atom from attack in a RSSR?-forming pathway. Formation of a coordinated disulfide in the rate-determining step is purposed, coupled with attack of a noncoordinated cysteine molecule on a vacated coordination position to stabilize the (Me6(tren)Cu(I) product.  相似文献   

11.
Two trypsin inhibitors, LA-1 and LA-2, have been isolated from ridged gourd (Luffa acutangula Linn.) seeds and purified to homogeneity by gel filtration followed by ion-exchange chromatography. The isoelectric point is atpH 4.55 for LA-1 and atpH 5.85 for LA-2. The Stokes radius of each inhibitor is 11.4 å. The fluorescence emission spectrum of each inhibitor is similar to that of the free tyrosine. The biomolecular rate constant of acrylamide quenching is 1.0×109 M?1 sec?1 for LA-1 and 0.8 × 109 M?1 sec?1 for LA-2 and that of K2HPO4 quenching is 1.6×1011 M?1 sec?1 for LA-1 and 1.2×1011M?1 sec?1 for LA-2. Analysis of the circular dichroic spectra yields 40%α-helix and 60%Β-turn for La-1 and 45%α-helix and 55%Β-turn for LA-2. Inhibitors LA-1 and LA-2 consist of 28 and 29 amino acid residues, respectively. They lack threonine, alanine, valine, and tryptophan. Both inhibitors strongly inhibit trypsin by forming enzymeinhibitor complexes at a molar ratio of unity. A chemical modification study suggests the involvement of arginine of LA-1 and lysine of LA-2 in their reactive sites. The inhibitors are very similar in their amino acid sequences, and show sequence homology with other squash family inhibitors.  相似文献   

12.
The technique of Stopped-Flow Circular Dichroism allows the simultaneous monitoring of chiroptical and absorbance transients at millisecond time resolution. In the binding of a chromophoric sulphonamide to Bovine Carbonic Anhydrase, the rapid kinetics of the induced circular dichroism and difference spectra proceed in parallel with bimolecular rate constant k1 = 5 × 106 M?1 sec?1 and apparent half reaction time of 8.7 msec for 24 μM reactants. A single classical binding process is indicated by both optical parameters.  相似文献   

13.
The kinetics of uptake and retention of β-ecdysone by imaginal discs from late third instar larvae of Drosophila melanogaster correspond well with those of the first synthetic response of discs to hormone, an increase in RNA synthesis.Competition studies indicate the presence of two types of hormone binding sites, specific and non-specific. The specific sites are saturated at hormone concentrations which fully induce morphogenesis. Results are consistent with the hypothesis that analogs which induce morphogenesis at differing concentrations bind to the same sites. Experiments with the inhibitors N-ethylmaleimide, actinomycin d, and cycloheximide suggest that the binding sites are pre-existing in the cell and require functional sulfhydryl groups for binding.Specific binding, binding that is competed by excess unlabeled β-ecdysone, is saturable (70–80 nM). Kinetic rate constants for this specific binding were estimated to be ka = 1.5 × 105M?1 min?1, kd = 3 × 10?2 min?1. The equilibrium dissociation constant calculated from the kinetic rate constants was Keq = 2 × 10?7M compared to 1.7 × 10?7M β-ecdysone required to induce morphogenesis in vitro and 2.5 × 10?7M determined to be the in vivo concentration at the time of induction of morphogenesis.  相似文献   

14.
Quaterpyridyneiron (III) complex ions anchored to partially ordered poly (L-glutamate) or poly (D-glutamate) were used as (enantiomeric) catalysts for the H2O2-oxidation of L(+) ascorbic acid at pH 7. When the α-helical fraction of polypeptide matrices was low, the configuration dissymmetry of the active sites was unable to impart any stereoselective effect in the catalysis, i.e. k = 3.66 x 103 M?1?sec?1 (25.9°C) with both catalysts. On the contrary, by increasing the amount of α-helix in the polymeric supports the stereoselectivity increases, the second-order rate constants kFeD being definitely higher than kFeL.Implications of the role played by the conformational dissymmetry of the active sites in the stereospecificity of the process are briefly discussed.  相似文献   

15.
《Free radical research》2013,47(1):205-210
Using the direct method of pulse radiolysis to determine the superoxide dismutase like activity of copper(II) cimetidine complexes, it was found that the reaction rate constant with O?2, kcat, was (8.5 ± 0.5) × 108 M?1s?1 independent of the cimetidine concentrations present in excess of 50–200 μM over the metal. The results suggest that either the 1:1 ligand to metal complex does not catalyze O?2 dismutation at a comparable rate to that of the 2:1 complex, or that the stability constant of the last species is much higher than that determined earlier by Kimura el al.,1 and only the 2:1 species is present in the solutions. With the indirect methods of cytochrome c and NBT for determining the ability of these complexes to catalyze O?2 dismutation, these compounds exhibited a much lower SOD activity. and kcat was determined to be (5.0 ± 0.3) × 106 and (7.± 0.4) × 101 M?1s?1. respectively using the two assays.  相似文献   

16.
N-Phenylhydroxylamine is oxidized in aqueous phosphate buffer to nitrosobenzene, nitrobenzene, and azoxybenzene. Degradation is O2 dependent and shows general catalysis by H2PO4? (k1 = 2.3 M?2 sec?1) and PO4?3 (k2 = 2.3 × 105M?2 sec?1) or kinetically equivalent terms. Evidence is presented suggesting the intermediacy of a highly reactive species leading to these products.  相似文献   

17.
The complexation reactions of O-phospho-DL-serine with Ni(II) or Co(II) were studied at 25°C and ionic strength 0.2 M (KNO3) by temperature-jump. The observed rate constants for formation of the Ni2+ and Co+2 monocomplexes were (1.32 ± 0.09) × 105 and (1.73 ± 0.33) × 107 M?1 sec?1, respectively. Complexation is postulated to involve formation of a monocoordinated steady state intermediate followed by rate-determining chelate ring closure.  相似文献   

18.
The nonenzymatic reduction of nitrosobenzene by NADPH and NADH in aqueous buffer solution at 25°C is described. Both reactants quantitatively convert nitrosobenzene to phenylhydroxylamine. Rate constants for reduction (kr) were determined spectrophotometrically and found to be identical at pH 5.7 and 7.4 and independent of buffer concentration. The values of kNADH (124–149 M?1 sec?1) and kNADPH (131–170 M?1 sec?1) are essentially identical. The reaction is not subject to general catalysis or specific salt effects. The oxidation of phenylhydroxylamine by NAD(P) to nitrosobenzene is only stimulated by a factor of 1.2 over oxidation in its absence (when the ratio of NADP: phenylhydroxylamine was 8:1).  相似文献   

19.
The rate constants of the reactions between pulse radiolytically produced superoxide anions and the Cu(II) chelates of salicylate, acetylsalicylate, p-aminosalicylate and diisopropylsalicylate were determined at pH 7.5 and found to range from 0.8 to 2.4 × 109 M?1 sec?1. It was intriguing to note that they had a superoxide dismutase activity identical with that of native cuprein-copper (k245 = 1.3 × 109 M?1 sec?1 per g-atom of Cu). These measurements confirm our earlier observations using indirect assays that all copper salicylates act as perfect model superoxide dismutases and favour the proposal that the activity of anti-inflammatory agents might be assigned to their in vivo formed Cu complexes.  相似文献   

20.
Binding of a Tet repressor mutant containing a single Trp43 residue in the tet operator recognition α-helix leads to the quenching of the protein fluorescence down to about 23% in the case of the tet O1 operator and to 40% in the case of the tet O2 operator. We have used fluorescence detection to describe the binding equilibrium and kinetics of the Tet repressor interaction with the 20-bp DNA operators tet O1 and tet O2. Stopped-flow measurements in an excess of the tet operators performed in 5 mM NaCl or 150 mM NaCl indicate that the reaction can be described by at least three exponentials characterized by different relaxation times. The mechanism of interaction for both operators as well as for two salt concentrations used can be described as TetR + Operator ? Complex 1 ? Complex 2 ? Complex 3. Only the much faster process can be described as a second-order reaction characterized by a bimolecular rate constant equal to 2.8 × 106 M?1 sec?1 for both operators. The medium and slow processes may be described by relaxational times ranging from 50 msec to seconds. The results of the binding equilibrium measurements extrapolated to 1 M NaCl concentration, which reflects the specific nonionic interaction between TetR and tet operators, indicate K as equal to 3.2 × 104 and 4.0 × 105 M?1 for tet O1 and tet O2, respectively. The number of monovalent ions replaced upon binding can be calculated as about 5 and 3 for tet O1 and tet O2, respectively. The binding of Tet repressor to the operators leads to changes in the circular dichroism spectra of the DNA which could indicate transitions of B-DNA into A-like DNA structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号