首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four states of tyrosine residues in the fibrinogen molecule   总被引:1,自引:0,他引:1  
The ionization of tyrosine residues in fibrinogen was studied by a spectrophotometric method. The total of 100 tyrosine residues in the fibrinogen molecule was classified into four states: (1) 28 tyrosine residues with pK 10.1 (m = 1.0). (2) tyrosine residues with pK 11.5 (m = 1.0), (3) 20 tyrosine residues with pK 12.2 (m = 3.0) and (4) 10 tyrosine residues non-ionizable. When fibrinogen was treated with 4 M guanidine . HCl, all of the tyrosine residues became ionizable with the ionization characteristics of pK 10.1 (m = 1.0). The ionization characteristics of tyrosine residues in plasmin-digested fibrinogen were similar to those of fibrinogen, while in CNBr-treated fibrinogen they were fairly different. The value, m, stands for the number of hydroxyl ions involved in the ionization of a tyrosine residue.  相似文献   

2.
Human glutathione transferase A4-4 is an enzyme catalyzing the detoxication of intracellularly produced electrophiles such as 4-hydroxynonenal and other alkenal products of lipid peroxidation. Two tyrosines in the active site of the enzyme have been studied with help of UV difference spectroscopy and site-directed mutagenesis. The titration curve of GST A4-4 shows a pK(a) of 6.7 attributable to tyrosine 9, which in the Y212F mutant was shifted to pK(a) 7.1. In both cases the pK(a) was independent of the absence or presence of GSH. Thus, the active-site tyrosine 9 of this isoenzyme is more than one unit more acidic than the corresponding tyrosine of other Alpha class glutathione transferases. The tyrosines remaining in the Y9F mutant titrate like free tyrosine with pK(a) values > or = 10. A mechanism involving a tyrosine-9-bound water molecule acting as a proton shuttle is proposed for the Michael additions catalyzed by GST A4-4.  相似文献   

3.
The pH dependence of the affinity of a 11-mer phosphotyrosine (pY) peptide (EPQpYEEIPIYL-NH2) for the SH2 domain of the tyrosine kinase p56(lck) was investigated with surface plasmon resonance (SPR). From SPR competition experiments the affinity in solution was obtained. The pH dependence of the affinity in solution can be well described by a proton linkage model with a single pK(a) shift upon binding, from 6.1 to 4.7. This shift is ascribed to the transition from the -2 to the -1 ionisation state of the tyrosine phosphate group. Based on the X-ray structure for the complex with Lck SH2, a pK(a) value of 5.3 for the bound pY peptide was computed, modelling the solvated protein as a system of point charges in a continuum. With the phosphate in the -2 state the binding energy is 1.8 kcal/mol more favourable than for the -1 state, corresponding to a 20-fold higher affinity. A proper charge is relevant in the design of potential therapeutic Lck SH2 ligands with mimics for the metabolically unstable tyrosine phosphate group.  相似文献   

4.
Chemical properties of the functional groups of insulin.   总被引:2,自引:2,他引:0  
Y K Chan  G Oda    H Kaplan 《The Biochemical journal》1981,193(2):419-425
The method of competitive binding [Kaplan, Stevenson & Hartley (1971) Biochem. J. 124, 289-299] with 1-fluoro-2,4-dinitrobenzene as the labelling reagent [Duggleby & Kaplan (1975) Biochemistry 14, 5168-5175] was used to determine the chemical properties, namely pK and reactivity, of the amino groups, the histidine residues and the tyrosine residues of the dimeric form of pig zinc-free insulin at 20.0 degrees C. The N-terminal glycine residue of the A-chain has a pK of 7.7 and a slightly higher than normal reactivity. The N-terminal phenylalanine residue of the B-chain has a pK of 6.9 and is approximately an order of magnitude more reactive than a corresponding amino group with the same pK value. The lysine epsilon-amino group has an unusually low pK of 7.0 but has approximately the expected reactivity of such a group. In the case of the two histidine and four tyrosine residues only the average properties of each class were determined. The histidine residues have a pK value of approx. 6.6, but, however, their reactivity is at least an order of magnitude greater than that of a free imidazole group. The tyrosine residues have a pK value of approx. 10, but their average reactivities are substantially less than for a free phenolic group. At alkaline pH values above 8 the reactivity of all the functional groups show sharp discontinuities, indicating that insulin is undergoing a structural change that alters the properties of these groups.  相似文献   

5.
The MAPK-activated kinase 3pK (chromosome 3p kinase), also known as MAPKAPK-3, is a member of a family of kinases that are activated by more than one mitogen-activated protein kinase (MAPK). 3pK is unique since it was shown to be activated by three members of the MAPK family, namely extracellular-signal-regulated kinase (ERK), p38, and Jun-N-terminal kinase (JNK). Accordingly, 3pK is highly activated both by mitogens and by stress-inducing agents or proinflammatory cytokines. Studies utilizing dominant interfering mutants and pharmacological agents revealed that upon mitogenic stimulation, 3pK is exclusively activated via the classical MAPK cascade, while stress-induced activation of 3pK is mainly mediated by p38. The mechanism defining the specificity of kinase action in response to mitogenic versus stress activation remains unknown. Here we show that 3pK is transported to the cytoplasm upon both stress and mitogenic stimulation. While kinetics of nuclear export are similar in both situations, the activation pattern differs substantially. In the mitogenic situation, active 3pK remains in the nucleus for a significant time and there may fulfill mitogen-specific functions. These data not only show that nuclear export of the kinase is mechanistically uncoupled from its activation, but also provide a novel mechanism by which cells may modulate enzyme activity toward a stimulus-specific response.  相似文献   

6.
Clarkson J  Smith DA 《FEBS letters》2001,503(1):30-34
The binding of sulphate to human serum apo-transferrin has been examined by ultraviolet absorption and ultraviolet resonance Raman difference spectroscopies between pH 6.0 and 9.0. The ultraviolet absorption data reveals a negative feature at 245 nm that increases in magnitude with pH, with an apparent pK(a) of 7.57, which the Raman difference data reveals to be due to tyrosine. The pK(a) of this tyrosine is unusually low and is measured at 7.84 by the Raman difference method and is elevated to greater than 9.0 upon addition of sulphate. Previous studies on the N-lobe imply that Tyr 188 is the tyrosine with a low pK(a) and also that Arg 124 is the primary binding site for the sulphate. The functional relevance may be that with sulphate bound, both carbonate binding and the deprotonation of Tyr will be disfavoured, and as a result so is iron binding.  相似文献   

7.
The influence of the local environment on the formation of a tyrosyl radical was investigated in modified photosynthetic reaction centers from Rhodobacter sphaeroides. The reaction centers contain a tyrosine residue placed approximately 10 A from a highly oxidizing bacteriochlorophyll dimer. Measurements by both optical and electron paramagnetic resonance spectroscopy revealed spectral features that are assigned as arising primarily from an oxidized bacteriochlorophyll dimer at low pH values and from a tyrosyl radical at high pH values, with a well-defined transition that occurred with a pK(a) of 6.9. A model based on the wild-type structure indicated that the Tyr at M164 is likely to form a hydrogen bond with His M193 and to interact weakly with Glu M173. Substitution of Tyr or Glu for His at M193 increased the pK(a) for the transition from 6.9 to 8.9, while substitution of Gln for His M193 resulted in a higher pK(a) value. Substitution of Glu M173 with Gln resulted in loss of the partial formation of the tyrosyl that occurs in the other mutants at low pH values. The results are interpreted in terms of the ability of the residues to act as proton acceptors for the oxidized tyrosine, with the pK(a) values reflecting those of either the putative proton acceptor or the tyrosine, in accord with general models of amino acid radicals.  相似文献   

8.
The state and role of tyrosine residues in adrenocortical cytochrome P-450scc was investigated. Spectrophotometric titration experiments showed the existence of two types of tyrosine residues in the hemoprotein molecule, i.e., exposed (pK 9.25) and buried (pK 10.75) ones. Chemical modification of the exposed tyrosine residues with N-acetylimidazole was carried out. The data obtained indicate the involvement of these residues in the interaction with adrenodoxin.  相似文献   

9.
Peptide analogs of tendamistat were synthesized and analyzed for alpha-amylase inhibitory activity. The pK(a) of the N-terminal tyrosine was modified by incorporation of ring-substituted analogs, which alters hydrogen bonding capacity. K(i) values ranging from 70 to 524 microM generally increased with increasing pK(a), indicating a necessity for H-bond donor ability.  相似文献   

10.
Spectral properties of pig intestinal Ca2+-binding protein (CaBP) and its apoprotein have been examined by fluorescence, absorption and c.d. Direct fluorescence from some of the five phenylalanine residues is observed and excitation spectra show that there is also energy transfer from some phenylalanine residues to the tyrosine. Absorption and c.d. spectra show that the tyrosine hydroxy group does not ionize significantly below pH 12. Tyrosine fluorescence is reversibly quenched by a lysine residue with a pK of 10.05 in the Ca2+ form. At low pH the tyrosine fluorescence is enhanced with transitions with pK values of approx. 4.2. The c.d. spectrum of the Ca2+ form shows a decrease of the ellipticity band at 276nm with a transition similar to that of the fluorescence titration. The apoprotein, however, shows an additional transition with a pK of about 6. The results are interpreted in terms of the recently published structure of the cow intestinal CaBP [Szebenyi, Obendorf & Moffat (1981) Nature (London) 294, 327-332]. The single tyrosine has a very high pK, although it apparently lies on the surface of the protein molecule.  相似文献   

11.
The Poisson-Boltzmann method was used to compute the pK(a) values of titratable residues in a set of class C beta-lactamases. In these calculations, the pK(a) of the phenolic group of residue Tyr150 is the only one to stand out with an abnormally low value of 8.3, more than one pK(a) unit lower than the measured reference value for tyrosine in solution. Other important residues of the catalytic pocket, such as the conserved Lys67, Lys315, His314, and Glu272 (hydrogen-bonded to the ammonium group of Lys315), display normal protonation states at neutral pH. pK(a) values were also computed in catalytically impaired beta-lactamase mutants. Comparisons between the relative k(cat) values and the Tyr150 pK(a) value in these mutants revealed a striking correlation. In active enzymes, this pK(a) value is always lower than the solution reference value while it is close to normal in inactive enzymes. These results thus support the hypothesis that the phenolate form of Tyr150 is responsible for the activation of the nucleophilic serine. The possible roles of Lys67 and Lys315 during catalysis are also discussed.  相似文献   

12.
The ability to adsorb proteins and enzymes on electrode surfaces enhances opportunities for studying enzyme activity and redox-based catalysis. Proteins may be bound in a chosen orientation on surfaces so that specific sites within them may be preferentially studied, but to date no systematic study of a redox moiety from solvent to electrode surface to the protein milieu has been performed. We report the redox and ionization behavior of tyrosine-cysteine, using the cysteine residue to form covalent linkages with Au and self-assembled-monolayer (SAM)-modified Au surfaces and using the tyrosine for redox activity. In addition, the same redox fragment incorporated into a protein bound to a SAM is examined. We find that directly binding the dipeptide to Au causes the greatest change in properties, while binding it to the SAM causes a slight perturbation in redox potential and a significant perturbation in pK(a). When azurin with a surface-exposed tyrosine is bound to a SAM-modified electrode, the redox potential and pK(a) of the tyrosine are nearly unperturbed from the values found for the dipeptide free in solution. Finally, quantification of the voltammetric signal indicates that tyrosine oxidation in the protein triggers the additional oxidation of another nearby amino acid.  相似文献   

13.
Naor MM  Jensen JH 《Proteins》2004,57(4):799-803
The structural determinants of the unusually low pK(a) values of Cys282 in human creatine kinase and Cys232 in alpha1-antitrypsin were studied computationally. We have demonstrated that hydrogen bonding to the cysteine residue is the prime determinant for both proteins. In the case of creatine kinase, the hydrogen bond donors are a serine side chain and an amide NH-group, while in alpha1-antitrypsin the donor is an amide NH. Each hydrogen bond lowers the pK(a) by between 0.8 and 1.5 pH units. The 1.1-unit lowering due to the Ser284-Cys282 hydrogen bond is in good agreement with the 1.2-unit difference between the Cys282 pK(a) value of wild-type and the S284A mutant of creatine kinase.  相似文献   

14.
To further characterize the role of D1-His190 in the oxidation of tyrosine Y(Z) in photosystem II, the pH dependence of P(680)(*)()(+) reduction was measured in H190A and Mn-depleted wild-type PSII particles isolated from the cyanobacterium, Synechocystis sp. PCC 6803. Measurements were conducted in the presence and absence of imidazole and other small organic bases. In H190A PSII particles, rapid reduction of P(680)(*)()(+) attributed to electron transfer from Y(Z) increased dramatically above pH 9, with an apparent pK(A) of approximately 10.3. In the presence of ethanolamine and imidazole, this dramatic increase occurred at lower pH values, with the efficiency of Y(Z) oxidation correlating with the solution pK(A) value of the added base. We conclude that the pK(A) of Y(Z) is approximately 10.3 in D1-H190A PSII particles. In Mn-depleted wild-type PSII particles, P(680)(*)()(+) reduction was accelerated by all exogenous bases examined (substituted imidazoles, histidine, Tris, and 1,4-diazabicyclo[2.2.2]octane). We conclude that Y(Z) is solvent accessible in Mn-depleted wild-type PSII particles and that its pK(A) is near that of tyrosine in solution. In Mn-depleted wild-type PSII particles, over 80% of the kinetics of P(680)(*)()(+) reduction after a flash could be described by three kinetic components. The individual rate constants of these components varied slightly with pH, but their relative proportions varied dramatically with pH, showing apparent pK(A) values of 7.5 and 6.25 (6.9 and 5.8 in the presence of Ca(2+) and Mg(2+) ions). An additional pK(A) value (pK(A) < 4.5) may also be present. To describe these data, we propose (1) the pK(A) of His190 is 6.9-7.5, depending on buffer ions, (2) the deprotonation of Y(Z) is facilitated by the transient formation of a either a hydrogen bond or a hydrogen-bonded water bridge between Y(Z) and D1-His190, and (3) when protonated, D1-His190 interacts with nearby residues having pK(A) values near 6 and 4. Because Y(Z) and D1-His190 are located near the Mn cluster, these residues may interact with the Mn cluster in the intact system.  相似文献   

15.
Wang PF  McLeish MJ  Kneen MM  Lee G  Kenyon GL 《Biochemistry》2001,40(39):11698-11705
All phosphagen kinases contain a conserved cysteine residue which has been shown by crystallographic studies, on both creatine kinase and arginine kinase, to be located in the active site. There are conflicting reports as to whether this cysteine is essential for catalysis. In this study we have used site-directed mutagenesis to replace Cys282 of human muscle creatine kinase with serine and methionine. In addition, we have replaced Cys282, conserved across all creatine kinases, with alanine. No activity was found with the C282M mutant. The C282S mutant showed significant, albeit greatly reduced, activity in both the forward (creatine phosphorylation) and reverse (MgADP phosphorylation) reactions. The K(m) for creatine was increased approximately 10-fold, but the K(m) for phosphocreatine was relatively unaffected. The V and V/K pH-profiles for the wild-type enzyme were similar to those reported for rabbit muscle creatine kinase, the most widely studied creatine kinase isozyme. However, the V/K(creatine) profile for the C282S mutant was missing a pK of 5.4. This suggests that Cys282 exists as the thiolate anion, and is necessary for the optimal binding of creatine. The low pK of Cys282 was also determined spectrophotometrically and found to be 5.6 +/- 0.1. The S284A mutant was found to have reduced catalytic activity, as well as a 15-fold increase in K(m) for creatine. The pK(a) of Cys282 in this mutant was found to be 6.7 +/- 0.1, indicating that H-bonding to Ser284 is an important, but not the sole, factor contributing to the unusually low pK(a) of Cys282.  相似文献   

16.
Xue L  Rando RR 《Biochemistry》2004,43(20):6120-6126
Lecithin-retinol acyltransferase (LRAT) catalyzes the transfer of an acyl moiety from the sn-1 position of lecithin to vitamin A, generating all-trans-retinyl esters. LRAT is a unique enzyme and is the founder member of an expanding group of proteins of largely unknown function. In an effort to understand the mechanism of LRAT action, it was of interest to assign the amino acid residues responsible for the two pK(a) values of 8.22 and 9.95 observed in the pH vs rate profile. Titrating C161 of LRAT with a specific affinity labeling agent at varying pH values shows that this residue has a pK(a) = 8.03. Coupled with previous studies, this titration reveals the catalytically essential C161 as the residue responsible for the ascending limb of the pH vs rate profile. Site-specific mutagenic experiments on the lysine and tyrosine residues of LRAT reveal that only the highly conserved tyrosine 154 is essential for catalytic activity. This residue is likely to be responsible for the pK(a) = 9.95 found in the pH vs rate profile. Thus, LRAT has three essential residues (C161, Y154, and H60), all of which are conserved in the LRAT family of enzymes.  相似文献   

17.
The unique bio-analytical properties of the amino acid tyrosine (Tyr) are the focus of this experiment from the research oriented biochemistry laboratory course at our university. In the present study pK(a(1)), pK(a(2)), and pK(a(3)) values for free Tyr were estimated to be 2.30, 9.40, and 9.97, respectively, when free Tyr was titrated with 1mM NaOH and 1mM HCl using a pH meter. Spectrophotometric analysis of the phenolic side chain pK(a(3)) revealed a value of 10.14, which was consistent with the pK(a)s estimated from the pH meter. The results from this experiment will allow students to compare the free Tyr properties with those present in a protein.  相似文献   

18.
19.
NDPK2 as a signal transducer in the phytochrome-mediated light signaling   总被引:3,自引:0,他引:3  
Nucleoside-diphosphate kinase (NDPK) 2 in Arabidopsis has been identified as a phytochrome-interacting protein by using the C-terminal domain of phytochrome A (PhyA) as the bait in yeast two-hybrid screening. The far-red light-absorbing form of phytochrome (Pfr) A stimulates NDPK2 gamma-phosphate exchange activity in vitro. To better understand the multiple functions of NDPK and its role in phytochrome-mediated signaling, we characterized the interaction between phytochrome and NDPK2. Domain studies revealed that PER-ARNT-SIM domain A in the C-terminal domain of phytochrome is the binding site for NDPK2. Additionally, phytochrome recognizes both the NDPK2 C-terminal fragment and the NDPK2 hexameric structure to fulfill its binding. To illustrate the mechanism of how the Pfr form of phytochrome stimulates NDPK2, His-197-surrounding residue mutants were made and tested. Results suggested that the H-bonding with His-197 inside the nucleotide-binding pocket is critical for NDPK2 functioning. The pH dependence profiles of NDPK2 indicated that mutants with different activities from the wild type have different pK(a) values of His-197 and that NDPK2 hyperactive mutants possess lower pK(a) values. Because a lower pK(a) value of His-197 accelerates NDPK2 autophosphorylation and the phospho-transfer between the phosphorylated NDPK2 and its kinase substrate, we concluded that the Pfr form of phytochrome stimulates NDPK2 by lowering the pK(a) value of His-197.  相似文献   

20.
A detailed study of the tyrosine spectral characteristics was carried out in a broad range of pHs for both isoforms of plastocyanin from poplar. It was found that Tyr 80 is always protonated while Tyr 83 can form a tirosinate at high pHs. The pK(a) of Tyr 83 is practically identical in plastocyanin a and b, but the quenching of its spectrum is different in the isoforms. This provides insights that the acidic patches surrounding Tyr 83 have different electrostatic properties in plastocyanin a and b. The protonation states and the electrostatic interactions were numerically modeled on the existing plastocyanin a structure and on a homology model of plastocyanin b. The results of numerical calculations agree with the experimental findings and identify several differences in the titration behavior of the acidic patches. The difference of the tyrosine quenching pH profiles of the isoforms is rationalized by the differences in the calculated pK(a)'s of amino acids in the neighboring acidic clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号