首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression analysis by means of microarrays is based on the sequence-specific binding of RNA to DNA oligonucleotide probes and its measurement using fluorescent labels. The binding of RNA fragments involving sequences other than the intended target is problematic because it adds a chemical background to the signal, which is not related to the expression degree of the target gene. The article presents a molecular signature of specific and nonspecific hybridization with potential consequences for gene expression analysis. We analyzed the signal intensities of perfect match (PM) and mismatch (MM) probes of GeneChip microarrays to specify the effect of specific and nonspecific hybridization. We found that these events give rise to different relations between the PM and MM intensities as function of the middle base of the PM, namely a triplet-like (C > G approximately T > A > 0) and a duplet-like (C approximately T > 0 > G approximately A) pattern of the PM-MM log-intensity difference upon binding of specific and nonspecific RNA fragments, respectively. The systematic behavior of the intensity difference can be rationalized on the level of basepairings of DNA/RNA oligonucleotide duplexes in the middle of the probe sequence. Nonspecific binding is characterized by the reversal of the central Watson-Crick (WC) pairing for each PM/MM probe pair, whereas specific binding refers to the combination of a WC and a self-complementary (SC) pairing in PM and MM probes, respectively. The Gibbs free energy contribution of WC pairs to duplex stability is asymmetric for purines and pyrimidines of the PM and decreases according to C > G approximately T > A. SC pairings on the average only weakly contribute to duplex stability. The intensity of complementary MM introduces a systematic source of variation which decreases the precision of expression measures based on the MM intensities.  相似文献   

2.
3.
Empirical Establishment of Oligonucleotide Probe Design Criteria   总被引:11,自引:0,他引:11  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of ≤85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (≤15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than −30 kcal/mol for 50-mer probes or −40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

4.
Quantifying interactions in DNA microarrays is of central importance for a better understanding of their functioning. Hybridization thermodynamics for nucleic acid strands in aqueous solution can be described by the so-called nearest neighbor model, which estimates the hybridization free energy of a given sequence as a sum of dinucleotide terms. Compared with its solution counterparts, hybridization in DNA microarrays may be hindered due to the presence of a solid surface and of a high density of DNA strands. We present here a study aimed at the determination of hybridization free energies in DNA microarrays. Experiments are performed on custom Agilent slides. The solution contains a single oligonucleotide. The microarray contains spots with a perfect matching (PM) complementary sequence and other spots with one or two mismatches (MM) : in total 1006 different probe spots, each replicated 15 times per microarray. The free energy parameters are directly fitted from microarray data. The experiments demonstrate a clear correlation between hybridization free energies in the microarray and in solution. The experiments are fully consistent with the Langmuir model at low intensities, but show a clear deviation at intermediate (non-saturating) intensities. These results provide new interesting insights for the quantification of molecular interactions in DNA microarrays.  相似文献   

5.
A simple thermodynamic model describing microarray oligo-target hybridization has been constructed. The relationship between the hybridization signal intensity and Gibbs free energy for oligo-target duplex formation has been considered. The behavior of this function, which we called energy hybridization isotherm, in response to target concentration change was modeled at different ratios of oligo/target concentrations. The results of modeling were compared with the relevant and currently available data from microarray adsorption experiments.  相似文献   

6.
7.
Dangling ends and surface-proximal tails of gene targets influence probe-target duplex formation and affect the signal intensity of probes on diagnostic microarrays. This phenomenon was evaluated using an oligonucleotide microarray containing 18-mer probes corresponding to the 16S rRNA genes of 10 waterborne pathogens and a number of synthetic and PCR-amplified gene targets. Signal intensities for Klenow/random primer-labeled 16S rRNA gene targets were dissimilar from those for 45-mer synthetic targets for nearly 73% of the probes tested. Klenow/random primer-labeled targets resulted in an interaction with a complex mixture of 16S rRNA genes (used as the background) 3.7 times higher than the interaction of 45-mer targets with the same mixture. A 7-base-long dangling end sequence with perfect homology to another single-stranded background DNA sequence was sufficient to produce a cross-hybridization signal that was as strong as the signal obtained by the probe-target duplex itself. Gibbs free energy between the target and a well-defined background was found to be a better indicator of hybridization signal intensity than the sequence or length of the dangling end alone. The dangling end (Gibbs free energy of −7.6 kcal/mol) was found to be significantly more prone to target-background interaction than the surface-proximal tail (Gibbs free energy of −64.5 kcal/mol). This study underlines the need for careful target preparation and evaluation of signal intensities for diagnostic arrays using 16S rRNA and other gene targets due to the potential for target interaction with a complex background.  相似文献   

8.
Chaotic mixer improves microarray hybridization   总被引:3,自引:0,他引:3  
Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.  相似文献   

9.
Efficient siRNA selection using hybridization thermodynamics   总被引:1,自引:1,他引:0       下载免费PDF全文
Small interfering RNA (siRNA) are widely used to infer gene function. Here, insights in the equilibrium of siRNA-target hybridization are used for selection of efficient siRNA. The accessibilities of siRNA and target mRNA for hybridization, as measured by folding free energy change, are shown to be significantly correlated with efficacy. For this study, a partition function calculation that considers all possible secondary structures is used to predict target site accessibility; a significant improvement over calculations that consider only the predicted lowest free energy structure or a set of low free energy structures. The predicted thermodynamic features, in addition to siRNA sequence features, are used as input for a support vector machine that selects functional siRNA. The method works well for predicting efficient siRNA (efficacy >70%) in a large siRNA data set from Novartis. The positive predictive value (percentage of sites predicted to be efficient for silencing that are) is as high as 87.6%. The sensitivity and specificity are 22.7 and 96.5%, respectively. When tested on data from different sources, the positive predictive value increased 8.1% by adding equilibrium terms to 25 local sequence features. Prediction of hybridization affinity using partition functions is now available in the RNAstructure software package.  相似文献   

10.
Application of high-density microarrays to the diagnostic analysis of microbial communities is challenged by the optimization of oligonucleotide probe sensitivity and specificity, as it is generally unfeasible to experimentally test thousands of probes. This study investigated the adjustment of hybridization stringency using formamide with the idea that sensitivity and specificity can be optimized during probe design if the hybridization efficiency of oligonucleotides with target and non-target molecules can be predicted as a function of formamide concentration. Sigmoidal denaturation profiles were obtained using fluorescently labeled and fragmented 16S rRNA gene amplicon of Escherichia coli as the target with increasing concentrations of formamide in the hybridization buffer. A linear free energy model (LFEM) was developed and microarray-specific nearest neighbor rules were derived. The model simulated formamide melting with a denaturant m-value that increased hybridization free energy (ΔG°) by 0.173 kcal/mol per percent of formamide added (v/v). Using the LFEM and specific probe sets, free energy rules were systematically established to predict the stability of single and double mismatches, including bulged and tandem mismatches. The absolute error in predicting the position of experimental denaturation profiles was less than 5% formamide for more than 90 percent of probes, enabling a practical level of accuracy in probe design. The potential of the modeling approach for probe design and optimization is demonstrated using a dataset including the 16S rRNA gene of Rhodobacter sphaeroides as an additional target molecule. The LFEM and thermodynamic databases were incorporated into a computational tool (ProbeMelt) that is freely available at http://DECIPHER.cee.wisc.edu.  相似文献   

11.
The hybridization behavior of small oligonucleotides arrayed on glass slides is currently unpredictable. In order to examine the hybridization efficiency of capture probes along target nucleic acid, 20-mer oligonucleotide probes were designed to hybridize at different distances from the 5' end of two overlapping 402- and 432-bp ermB products amplified from the target DNA. These probes were immobilized via their 5' end onto glass slides and hybridized with the two labeled products. Evaluation of the hybridization signal for each probe revealed an inverse correlation with the length of the 5' overhanging end of the captured strand and the hybridization signal intensity. Further experiments demonstrated that this phenomenon is dependent on the reassociation kinetics of the free overhanging tail of the captured DNA strand with its complementary strand. This study delineates key predictable parameters that govern the hybridization efficiency of short capture probes arrayed on glass slides. This should be most useful for designing arrays for detection of PCR products and nucleotide polymorphisms.  相似文献   

12.
A key issue in applications of short oligonucleotide-based microarrays is how to design specific probes with high sensitivity. Some details of the factors affecting microarray hybridization remain unclear, hampering a reliable quantification of target nucleic acids. We have evaluated the effect of the position of the fluorescent label [position of label (POL)] relative to the probe-target duplex on the signal output of oligonucleotide microarrays. End-labelled single-stranded DNA targets of different lengths were used for hybridization with perfect-match oligonucleotide probe sets targeting different positions of the same molecule. Hybridization results illustrated that probes targeting the labelled terminus of the target showed significantly higher signals than probes targeting other regions. This effect was independent of the target gene, the fluorophore and the slide surface chemistry. Comparison of microarray signal patterns of fluorescently end-labelled, fluorescently internally random-labelled and radioactively end-labelled target-DNAs with the same set of oligonucleotide probes identified POL as a critical factor affecting signal intensity rather than binding efficiency. Our observations define a novel determinant for large differences of signal intensities. Application of the POL effect may contribute to better probe design and data interpretation in microarray applications.  相似文献   

13.
Empirical establishment of oligonucleotide probe design criteria   总被引:6,自引:0,他引:6  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of < or =85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (< or =15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50-mer probes or -40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

14.
An assessment of the hybridization characteristics of oligonucleotide tiling arrays was carried out using 162 full-length sequenced cDNA clones in spike-in experiments. The properties of array probes that influence signal intensity were investigated, and their capability in the detection of the cDNA exons was evaluated. The signal intensities detected in exonic and nonexonic genomic regions were examined by focusing on the features of probe sequences that raise or lower the level of intensity and on the causes of false positive signals found in nonexonic regions. The effectiveness of measures used in published protocols to improve the separation between signal and background intensity distributions, including the use of replicates and threshold parameterization of signal intensity, was assessed. Sensitivity and specificity in the detection of exons were measured using various sets of threshold parameters, and the effects of each parameter on the detection efficiency and the rate of false positives were evaluated. It was also demonstrated that hybridization of full-length cDNA clones is an excellent method to investigate the characteristics of oligonucleotide tiling arrays.  相似文献   

15.
Dangling ends and surface-proximal tails of gene targets influence probe-target duplex formation and affect the signal intensity of probes on diagnostic microarrays. This phenomenon was evaluated using an oligonucleotide microarray containing 18-mer probes corresponding to the 16S rRNA genes of 10 waterborne pathogens and a number of synthetic and PCR-amplified gene targets. Signal intensities for Klenow/random primer-labeled 16S rRNA gene targets were dissimilar from those for 45-mer synthetic targets for nearly 73% of the probes tested. Klenow/random primer-labeled targets resulted in an interaction with a complex mixture of 16S rRNA genes (used as the background) 3.7 times higher than the interaction of 45-mer targets with the same mixture. A 7-base-long dangling end sequence with perfect homology to another single-stranded background DNA sequence was sufficient to produce a cross-hybridization signal that was as strong as the signal obtained by the probe-target duplex itself. Gibbs free energy between the target and a well-defined background was found to be a better indicator of hybridization signal intensity than the sequence or length of the dangling end alone. The dangling end (Gibbs free energy of -7.6 kcal/mol) was found to be significantly more prone to target-background interaction than the surface-proximal tail (Gibbs free energy of -64.5 kcal/mol). This study underlines the need for careful target preparation and evaluation of signal intensities for diagnostic arrays using 16S rRNA and other gene targets due to the potential for target interaction with a complex background.  相似文献   

16.
Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.  相似文献   

17.
Huan B  Van Atta R  Cheng P  Wood ML  Zychlinsky E  Albagli D 《BioTechniques》2000,28(2):254-5, 258-60
In situ hybridization techniques have been an important research tool since first introduced 30 years ago, and more recently clinical applications have been expanding greatly. Still, further improvements in the assay sensitivity and protocols that are amenable to routine clinical use are desired. We use a novel photo-cross-linking technology to irreversibly bind short oligonucleotide probes to the target sequence following a hybridization period. The cross-linking agent is incorporated into the backbone of the probe and is activated to react with pyrimidines in the opposite strand by near-UV (300-370 nm) irradiation. By locking the probe to the target, very stringent wash conditions can be used that would otherwise completely remove probes that are hybridized but not cross-linked to the target. Consequently, the probe-specific signal is maximized, while the background signal is minimized to the greatest extent possible with the stringency of the wash. The use of short, photo-cross-linkable probes presents a new strategy for maximizing the sensitivity of probe hybridization or signal amplification-based in situ techniques.  相似文献   

18.
An oligonucleotide microarray hybridization system to differentiate microbial species was designed and tested. Seven microbial species were studied, including one Bacillus and six Pseudomonas strains. DNA sequences near the 5′ end of 16S rRNA genes were aligned and two contiguous regions of high variability, flanked by highly conserved sequences, were found. The conserved sequences were used to design PCR primers which efficiently amplified these polymorphic regions from all seven species. The amplicon sequences were used to design 88 9mer hybridization probes which were arrayed onto glass slides. Single-stranded, fluorescence-tagged PCR products were hybridized to the microarrays at 15°C. The experimental results were compared with the ΔG° values for all matched and mismatched duplexes possible between the synthetic probes and the 16S target sequences of the seven test species, calculated using a ‘virtual hybridization’ software program. Although the observed hybridization patterns differed significantly from patterns predicted solely on the basis of perfect sequence matches, a unique hybridization fingerprint was obtained for each of the species, including closely related Pseudomonas species, and there was a reasonable correlation between the intensity of observed hybridization signals and the calculated ΔG° values. The results suggest that both perfect and mismatched pairings can contribute to microbial identification by hybridization fingerprinting.  相似文献   

19.
A new strategy for analysis of point mutations using oligonucleotide array (genosensor) hybridization was investigated. In the new approach, a single-stranded target strand is preannealed with a labeled "stacking oligonucleotide," and then the partially duplex labeled target molecule is hybridized to an array of glass-tethered oligonucleotide probes, targeted to the region on the target immediately adjacent to the stacking oligomer. In this configuration, the base-stacking interactions between the "capture probe" and the contiguously stacking oligomer stabilize the binding of the target molecule to its complementary probe on the genosensor array. The temperature of hybridization can be adjusted so that the target molecule will bind to the glass-tethered probe only in the presence of the stacking oligomer, and a single mismatch at or near the terminal position ol the capture probe disrupts the stacking interactions and thereby eliminates or greatly reduces the hybridization. This stacking hybridization approach was investigated using a collection of synthetic targets, probes, and stacking oligonucleotides, which permitted identification of conditions for optimal base mismatch discrimination. The oligonucleotide probes were tethered to the glass using a simple, improved attachment chemistry in which a 3'-aminopropanol function introduced into the probe during chemical synthesis binds covalently to silanol groups on clean, underivatized glass. "Operating parameters" examined in the stacking hybridization system included length of capture probe, position, type and number of mismatches between the probe and the target, temperature of hybridization and length of washing, and the presence of terminal phosphate group in the probe, at its junction with the stacking oligomer. The results suggest that in the stacking hybridization configuration: 1. Optimal mismatch discrimination with 9-mer probes occurs at 45 degrees C, after which little or no improvement in mispair rejection occurred on lengthy continued washing at 45 degrees C. 2. At 25 degrees C optimal mismatch discrimination occurred with 7- or 8-mer probes, or with 9-mer probes containing an additional internal mismatch. 3. The presence of a phosphate group on the 5'-end of the glass-tethered probe had no general effect on mismatch discrimination, but influenced the relative stability of different mismatches in the sequence context studied. These results provide a motivation for continued development of the stacking hybridization technique for nucleic acid sequence analysis. This approach offers several advantages over the traditional allele-specific oligonucleotide hybridization technique, and is distinct from the contiguous stacking hybridization sitrategy that the Mirzabekov laboratory has introduced (Yershov et al. (1996) Proc. Natl. Acad. Sci. USA 93, 4913-4918; Parinov et al. (1996) Nucleic Acids Res. 24, 2998-3004).  相似文献   

20.
The efficiency of discrimination between perfect and mismatched duplexes during hybridization on microchips depends on the concentrations of target DNA in solution and immobilized probes, buffer composition, and temperature of hybridization and is determined by both thermodynamic relationships and hybridization kinetics. In this work, optimal conditions of discrimination were studied using hybridization of fluorescently labeled target DNA with custom-made gel-based oligonucleotide microchips. The higher the concentration of immobilized probes and the higher the association constant, the higher the concentration of the formed duplexes and the stronger the corresponding fluorescence signal, but, simultaneously, the longer the time needed to reach equilibrium. Since mismatched duplexes hybridize faster than their perfect counterparts, perfect-to-mismatch signal ratio is lower in transient regime, and short hybridization times may hamper the detection of mutations. The saturation time can be shortened by decreasing the probe concentration or augmenting the gel porosity. This improves the detection of mutations in transient regime. It is shown that the decrease in the initial concentration of oligonucleotide probes by an order of magnitude causes only 1.5-2.5-fold decrease of fluorescence signals after hybridization of perfect duplexes for 3-12 h. At the same time, these conditions improve the discrimination between perfect and mismatched duplexes more than two-fold. A similar improvement may be obtained using an optimized dissociation procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号