首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elaboration of dentin collagen precursors by the odontoblasts in the incisor teeth of 30–40-g rats was investigated by electron microscopy, histochemistry, and radioautography after intravenous injection of tritium-labeled proline. At 2 min after injection, when the labeling of blood proline was high, radioactivity was restricted to the rough endoplasmic reticulum, indicating that it is the site of synthesis of the polypeptide precursors of collagen, the pro-alpha chains. At 10 min, when the labeling of blood proline had already declined, radioactivity was observed in spherical portions of Golgi saccules containing entangled threads, and, at 20 min, radioactivity appeared in cylindrical portions containing aggregates of parallel threads. The parallel threads measured 280–350 nm in length and stained with the low pH-phosphotungstic acid technique for carbohydrate and with the silver methenamine technique for aldehydes (as did extracellular collagen fibrils). The passage of label from spherical to cylindrical Golgi portions is associated with the reorganization of entangled into parallel threads, which is interpreted as the packing of procollagen molecules. Between 20 and 30 min, prosecretory and secretory granules respectively became labeled. These results indicate that the cylindrical portions of Golgi saccules transform into prosecretory and subsequently into secretory granules. Within these granules, the parallel threads, believed to be procollagen molecules, are transported to the odontoblast process. At 90 min and 4 h after injection, label was present in predentin, indicating that the labeled content of secretory granules had been released into predentin. This occurred by exocytosis as evidenced by the presence of secretory granules in fusion with the plasmalemma of the odontoblast process. It is proposed that pro-alpha chains give rise to procollagen molecules which assemble into parallel aggregates in the Golgi apparatus. Procollagen molecules are then transported within secretory granules to the odontoblast process and released by exocytosis. In predentin procollagen molecules would give rise to tropocollagen molecules, which would then polymerize into collagen fibrils.  相似文献   

2.
The biogenesis of basement-membrane components was investigated in the endodermal cells of the rat parietal yolk sac in 12.5-day pregnant rats; 3H-proline was injected into conceptuses. After various time intervals, the parietal yolk sac, including endodermal cells and the associated Reichert's membrane, was removed and processed for electron-microscopic radioautography. Silver grains were counted over endodermal cell organelles and Reichert's membrane. At 2 and 5 min after 3H-proline injection, endodermal cells showed heavy labeling in rough endoplasmic reticulum (rER). Silver grain density over the rER decreased from 2 to 20 min and then remained at a plateau. Grain density was moderate over the Golgi apparatus initially but rose to a peak at 2 hr and decreased by 4 hr and later. Grain density was negligible over secretory granules at 2 and 5 min and increased moderately with time to reach a maximum at 8 hr. Thus, radioautographic peaks occurred sequentially in rER, Golgi apparatus, and secretory granules. By 4 hr and later, silver grains accumulated over Reichert's membrane. These results indicated that endodermal cells incorporated labeled proline into substances which were processed from the rER through the Golgi apparatus, transported from there to the cell surface by secretory granules, and released for export to Reichert's membrane. To clarify the nature of the exported substances, the amount of label present in proline and hydroxyproline residues after 3H-proline injection was measured in Reichert's membrane with or without the associated endodermal cells. Within the cells, 61.8% of the labeled proteins were classified as "sedentary" and 38.2% as "exportable." Of the label exported to Reichert's membrane, 66.3% consisted of type IV collagen and the rest of other basement-membrane components. The results obtained with this model suggest that basement-membrane proteins, including type IV collagen, are elaborated by the associated cells through the classical pathway: rER-Golgi apparatus-secretory granules.  相似文献   

3.
The secretory pathway of dentin phosphoproteins in rat incisors was studied by electron microscopic radioautography after the injection of 3H-serine, and the results were compared with those using 3H-proline as a tracer. Five min after injection of 3H-serine, radioactivity was found in the rough endoplasmic reticulum. At 10 min, silver grains were observed over the spherical portions of the cisface of the Golgi apparatus. At 20 min after injection, silver grains were seen over the cylindrical portions of the transface of the Golgi apparatus. The secretory granules showed the strongest reaction from 20 min to 1 hr. At 45 min, a significant labeled band appeared at the mineralization front. At 1 hr, the labeling at the mineralization front began to appear in the mineralized dentin, and after 12 hr this labeled band was located within the mineralized dentin. The pathway of 3H-proline was essentially the same as that of 3H-serine, but 3H-proline moved more slowly than 3H-serine, especially in transit from the rough endoplasmic reticulum to the Golgi apparatus. Secretory granules were heavily labeled from 30 min to 1 hr after injection of 3H-proline; no labeling was found at the mineralization front at 45 min. The labeling seen initially over the predentin was over the mineralized dentin no earlier than 6 hr after injection. The labeling pattern with 3H-serine is closely related to the localization of phosphoproteins, whereas the pattern with 3H-proline reflects the production of collagen rather than of phosphoproteins. The present radioautographic results indicate that dentin phosphoproteins are related to secretory granules and are secreted by odontoblasts at the mineralization front and also that phosphoproteins are involved in the process of mineralization of the circumpulpal dentin.  相似文献   

4.
Young rats given an intravenous injection of [3H]proline were killed at successive times from 4 to 80 min later. Fibroblasts from the front foot pad were radioautographed ; silver grains were counted over several of the organelles and the results were expressed as percent radiolabel per unit volume. These percentages reached a peak over rough endoplasmic reticulum cisternae at 4 min, intermediate vesicles and tubules at 10 min, spherical distensions of cis-side Golgi saccules at 20 min, cylindrical distensions of trans-side saccules between 40 and 60 min, and secretory granules at 60 min. It is proposed that the succession of peaks corresponds to the migration pathway of collagen precursor proteins within fibroblasts; that is, the proteins synthesized in rough endoplasmic reticulum are delivered by intermediate vesicles and/or tubules to the spherical distensions of cis-side saccules, somehow pass from there to the cylindrical distensions of trans-side saccules and, finally, are carried by secretory granules to the extracellular space.  相似文献   

5.
The parietal layer of the rat yolk sac includes a 5 microliter thick sheet known as Reichert's membrane that exhibits properties of basement membranes. Its inner side is lined by a single layer of loosely distributed cells referred to as endodermal cells. Both Reichert's membrane and endodermal cells were examined at 13-14 days' gestation with emphasis on the ultrastructure of the Golgi apparatus, the identification of its component parts by specific phosphatase activities, and its possible role in the cells' secretory process. Reichert's membrane is composed of a series of stacked layers similar to basal laminae and composed of a network of fibrils with a diameter of 2-8 nm along which dots are located at irregular intervals. The endodermal cells contain the usual organelles, including interconnected rough endoplasmic reticulum (rER) cisternae and a prominent Golgi apparatus. With the help of phosphatase reactions, the stacks of Golgi saccules were divided into a) "phosphatase-free" saccules, the first ones on the cis or forming side, b) one or two "intermediate" saccules in the middle of the stacks, containing nicotinamide adenine dinucleotide phosphatase activity, c) one or two "last" saccules rich in thiamine pyrophosphatase activity on the trans or mature side, and d) continuing beyond the trans side, the GERL element displaying acid phosphatase activity. The latter is associated with profiles equally rich in acid phosphatase and tentatively considered to be prosecretory granules. Finally, the ectoplasm adjacent to Reichert's membrane displays large, acid phosphatase-containing structures tentatively considered to be secretory granules. Thus, the extensive rER network, the well-compartmentalized Golgi apparatus, and the presence of structures which may be prosecretory and secretory granules indicate that the endodermal cells are well-equipped for the secretion of the components of Reichert's membrane.  相似文献   

6.
Reichert's membrane and the endodermal cells of the parietal yolk sac were examined for the presence of laminin antigenicity using anti-laminin antibodies and the peroxidase-antiperoxidase sequence. Immunostaining was observed through the full width of Reichert's membrane and within endodermal cells. In these cells immunostaining was observed in rough endoplasmic reticulum (rER) cisternae and Golgi apparatus. The Golgi staining could occur in any saccule, but predominated in components interpreted as the last saccule of the stack, the GERL element, and associated prosecretory granules. The secretory granules found in the ectoplasm were also immunostained. Finally, multivesicular bodies showed some staining. The immunostaining of Reichert's membrane indicates the presence of laminin itself, while that of rER cisternae and the Golgi apparatus is attributed to laminin precursors. Presumably the biosynthesis of laminin occurs along the usual protein pathway, that is, from rER through Golgi saccules and the GERL element to secretory granules, which release their content into Reichert's membrane. The laminin immunostaining of Reichert's membrane and endodermal cells is similar to that of type IV collagen. It is, therefore, likely that the two substances are processed and secreted simultaneously.  相似文献   

7.
Summary Odontoblasts, osteoblasts and fibroblasts of young rats were examined in the electron microscope after staining thin sections either with lead citrate alone or with uranyl acetate prior to lead citrate.With lead citrate alone, collagen fibrils in the extracellular matrix stand out as lucent structures against a moderately electron dense background. Within the cells, lucency is restricted to certain dilated portions of the Golgi saccules as well as to the secretory granules located nearby and in the secretory pole of the cells. The lucency present in these compartments may be attributed to fibrils that are similar to the lucent collagen fibrils in the extracellular matrix. Other cellular compartments, e.g. the rough ER, do not display lucency.When preparations are stained with uranyl acetate prior to lead citrate, lucency is observed neither in the matrix nor in the cells. In the matrix, collagen fibrils are easily identifiable by their cross banded pattern. In the odontoblasts, dilated portions of Golgi saccules between the outer and inner face contain filaments aligned in parallel that are approximately 3 000 Å in length. In saccules on the inner face filament aggregates are present, some of them exhibiting a cross banding pattern. In secretory granules, however, the contents appear rather homogeneous.It is suggested that filament aggregates of collagen can assemble in the Golgi apparatus from filamentous units. These are transported through the cell by way of secretion granules and are discharged to the extracellular matrix by exocytosis.This investigation was supported by grants of the Medical Research Council of Canada. The author wishes to express appreciation to Dr. C. P. Leblond for his guidance in the course of this work.  相似文献   

8.
The mandibular condyle from 20-day-old rats was examined in the electron microscope with particular attention to intracellular secretory granules and extracellular matrix. Moreover, type II collagen was localized by an immunoperoxidase method. The condyle has been divided into five layers: (1) the most superficial, articular layer, (2) polymorphic cell layer, (3) flattened cell layer, (4) upper hypertrophic, and (5) lower hypertrophic cell layers. In the articular layer, the cells seldom divide, but in the polymorphic layer and upper part of the flattened cell layer, mitosis gives rise to new cells. In these layers, cells produce two types of secretory granules, usually in distinct stacks of the Golgi apparatus; type a, cylindrical granules, in which 300-nm-long threads are packed in bundles which appear "lucent" after formaldehyde fixation; and type b, spherical granules loaded with short, dotted filaments. The matrix is composed of thick banded "lucent" fibrils in a loose feltwork of short, dotted filaments. The cells arising from mitosis undergo endochondral differentiation, which begins in the lower part of the flattened cell layer and is completed in the upper hypertrophic cell layer; it is followed by gradual cell degeneration in the lower hypertrophic cell layer. The cells produce two main types of secretory granules: type b as above; and type c, ovoid granules containing 300-nm-long threads associated with short, dotted filaments. A possibly different secretory granule, type d, dense and cigar-shaped, is also produced. The matrix is composed of thin banded fibrils in a dense feltwork. In the matrix of the superficial layers, the "lucency" of the fibrils indicated that they were composed of collagen I, whereas the "lucency" of the cylindrical secretory granules suggested that they transported collagen I precursors to the matrix. Moreover, the use of ruthenium red indicated that the feltwork was composed of proteoglycan; the dotted filaments packed in spherical granules were similar to, and presumably the source of, the matrix feltwork. The superficial layers did not contain collagen II and were collectively referred to as perichondrium. In the deep layers, the ovoid secretory granules displayed collagen II antigenicity and were likely to transport precursors of this collagen to the matrix, where it appeared in the thin banded fibrils. That these granules also carried proteoglycan to the matrix was suggested by their content of short dotted filaments. Thus the deep layers contained collagen II and proteoglycan as in cartilage; they were collectively referred to as the hyaline cartilage region.  相似文献   

9.
The vasopressin-producing neurons of the hypothalamo-neurohypophysial system are a particularly good model with which to consider the relationship between the Golgi apparatus nd GERL and their roles in secretory granule production because these neurons increase their synthesis and secretion of vasopressin in response to hyperosmotic stress. Enzyme cytochemical techniques for acid phosphatase (AcPase) and thiamine pyrophosphatase (TPPase) activities were used to distinguish GERL from the Golgi apparatus in cell bodies of the supraoptic nucleus from normal mice, mice hyperosmotically stressed by drinking 2% salt water, and mice allowed to recover for 5-10 d from hyperosmotic stress. In nonincubated preparations of control supraoptic perikarya, immature secretory granules at the trans face of the Golgi apparatus were frequently attached to a narrow, smooth membrane cisterna identified as GERL. Secretory granules were occasionally seen attached to Golgi saccules. TPPase activity was present in one or two of the trans Golgi saccules; AcPase activity appeared in GERL and attached immature secretory granules, rarely in the trans Golgi saccules, and in secondary lysosomes. As a result of hyperosmotic stress, the Golgi apparatus hypertrophied, and secretory granules formed from all Golgi saccules and GERL. Little or no AcPase activity could be demonstrated in GERL, whereas all Golgi saccules and GERL-like cisternae were TPPase positive. During recovery, AcPase activity in GERL returned to normal; however, the elevated TPPase activity and secretory granule formation seen in GERL-like cisternae and all Golgi saccules during hyperosmotic stress persisted. These results suggest that under normal conditions GERL is the predominant site for the secretory granule formation, but during hyperosmotic stress, the Golgi saccules assume increased importance in this function. The observed cytochemical modulations in Golgi saccules and GERL suggest that GERL is structurally and functionally related to the Golgi saccules.  相似文献   

10.
To identify intracellular calcium pools that may be involved in the secretory process in prolactin (PRL) cells, hemi pituitaries were incubated in medium containing 10(-6) M dopamine, 5 mM cyclic cAMP (experimentals), or in medium alone (controls) and then processed for electron microscopy using potassium pyroantimonate to localize intracellular calcium. PRL in the medium was measured by radioimmunoassay. The concentration of antimonate associated with mitochondria, Golgi saccules, and secretory granules was estimated. Dopamine inhibition of PRL secretion (> 80% at 1, 2, 3 h) resulted in accumulation of secretory granules in all stages of maturation and dilation of Golgi saccules at 2 and 3 h, accompanied by increased mitochondria antimonate and increased Golgi-associated antimonate. Cyclic AMP stimulation of secretion (635% at 5 min., declining to 34% at 1 h) resulted in marked exocytosis at 5 and 15 min., declining after 30 min. Mitochondrial antimonate decreased after 30 min. Stimulated cells exhibited numerous coated membrane structures at or near exocytotic pits and an amassing of microvesicles at the margin of the Golgi apparatus. Although some secretory granules consistently exhibited reactivity to antimonate (unchanged by inhibition or stimulation), plasma membrane, and granule membrane translocated to the plasma membrane during exocytosis, were not reactive.  相似文献   

11.
The elaboration of enamel matrix glycoprotein was investigated in secretory ameloblasts of incisor teeth in 30–40-g rats. To this end, the distribution of glycoprotein was examined histochemically by the use of phosphotungstic acid at low pH, while the formation of glycoprotein was traced radioautographically in animals sacrificed 2.5–30 min after galactose-3H injection. Histochemically, the presence of glycoprotein is observed in ameloblasts as well as in the enamel matrix; in ameloblasts glycoprotein occurs within the Golgi apparatus in amounts increasing from the outer to the inner face of the stacks of saccules, and is concentrated in condensing vacuoles and secretory granules; in the enamel matrix, glycoprotein is observed within linear subunits. Radioautographs at 2.5 min after injection demonstrate the uptake of galactose-3H label by Golgi saccules, indicating that galactose-3H is incorporated into glycoprotein within this organelle. After 5–10 min, the label collects in the condensing vacuoles and secretory granules of the Golgi region. By 20–30 min, the label appears in the secretory granules of the apical (Tomes') processes, as well as in the enamel matrix (next to the distal end of the apical processes, and at the tips of matrix prongs). In conclusion, galactose contributes to the formation of glycoprotein within the Golgi apparatus. The innermost saccules then distribute the completed glycoprotein to condensing vacuoles, which later evolve into secretory granules. These granules rapidly migrate to the apical processes, where they discharge their glycoprotein content to the developing enamel.  相似文献   

12.
The present electron microscopic cytochemical investigation was undertaken to characterize the alterations in the golgi apparatus and GERL of rat parotid acinar cells during ethionine intoxication and recovery. Although the Golgi apparatus and GERL were reduced in size, and some broadening of the Golgi saccules occurred as the result of ethionine treatment, the relative localization of thiamine pyrophosphatase (TPPase) activity in the Golgi saccules, and acid phosphatase activity (AcPase) in GERL, remained unchanged. Shortly after ethionine treatment was stopped, a dramatic redistribution of enzyme activities was noted. Within the first 24 hours of recovery, the Golgi apparatus began to enlarge, and the content of secretory granules increased. By day 3 of recovery, cisternae morphologically identifiable as GERL and forming secretory granules possessed TPPase activity, while AcPase activity was virtually undetectable. After seven days of recovery, the Golgi apparatus and GERL appeared both morphologically and cytochemically normal. The enzyme modulation observed during recovery may be correlated with increased secretory granule production. Furthermore, the presence of TPPase activity in GERL and forming secretory granules lends support to the suggestion that GERL may be derived from the trans Golgi saccule.  相似文献   

13.
M I Cho  P R Garant 《Acta anatomica》1985,121(4):205-215
The administration of colchicine disrupts the normal organization of the Golgi complex and blocks the secretion of collagen precursors in periodontal ligament fibroblasts of the mouse. The fate of the unsecreted collagen precursors contained in Golgi-derived saccules and newly formed dense bodies was followed by electron microscopy. A progressive condensation of saccule content along with phase separation of electron-dense and electron-lucent material was observed. Fusion of saccules with dense secretory bodies gave rise to larger inclusions (zebra bodies; ZB) filled with a combination of electron-dense and electron-lucent material. In some ZB, these materials appeared to polymerize into fibrillar units. The fibrillar units stained with silver methenamine like normal collagenous fibrils. These results suggest that unsecreted collagen precursors accumulate in vesicular compartments within which partial polymerization can occur. This finding may explain some reports of intracellular collagenous fibrils in fibroblasts of pathologically altered connective tissues.  相似文献   

14.
Using lectin binding, we characterized subdomains of the rough endoplasmic reticulum (rER) in goblet cells of the rat colon. In this cell type, special rER regions can be differentiated on the basis of their content of low electron density and dilated cisternal spaces in conventional transmission electron microscopic preparations. The fine fibrillar content of these cisternal regions demonstrated high-affinity binding with lectins from wheat germ, Helix pomatia, Griffonia simplicifolia I-A4 and -B4, and Ricinus communis I, although not with the sialic acid-specific Limax flavus lectin and the fucose-binding Ulex europaeus I lectin. Sugar-inhibitory experiments indicated that glycoconjugates packed within these regions bound the lectins with higher affinity than molecules present in the Golgi apparatus and secretory granules. Furthermore, the lectin binding patterns of the rER subdomains differed from those of the Golgi apparatus and mucin granules: the terminal sugar residues sialic acid and fucose were demonstrable in the Golgi apparatus and mucin granules and were absent from the rER, while galactose-recognizing lectins bound intensely at these rER regions, weakly to Golgi elements, and were almost absent from mucin granules.  相似文献   

15.
The coagulating gland of male rodents is part of the prostatic complex. Various mechanisms of secretion have been postulated, in part because organelles commonly involved in the secretory process possess unusual features, such as extreme distension of the rough endoplasmic reticulum. In the present study, the pathway, kinetics, and mode of secretion in the coagulating gland of the mouse were studied by electron microscope autoradiography at intervals between 5 min and 8 h after administration of 3H-threonine. The percentage of grains associated with the rough endoplasmic reticulum was initially high and generally decreased throughout the experiment, while a pronounced rise in the proportion of grains associated with the Golgi apparatus and secretory granules was observed 6 h after injection of precursor. In addition, there was a smaller elevation in the percentage of grains over the Golgi apparatus and secretory granules between 1 and 4 h, and radioactive material first reached the lumen of the gland 4 h after injection of the precursor. Although the general pathway of intracellular transport of secretory protein resembles that in other cells, the results indicate that there are several unusual aspects to the secretory process in the coagulating gland. First, the rate of transport was markedly slower than in most other exocrine gland cells, since the bulk of the labeled protein did not reach the Golgi apparatus and secretory granules until 6 h after administration of precursor. This reflected prolonged retention of secretory products in the endoplasmic reticulum. Second, in addition to the major bolus of labeled material that traversed the cells at about 6 h, a smaller wave of radioactivity appeared to pass through the Golgi apparatus and secretory granules and reach the lumen earlier, within the first few hours after the injection. Finally, the primary mode of secretion in the coagulating gland appears to be merocrine because the secretory granules contained much labeled protein.  相似文献   

16.
The method of secretory granuleformation in the acinar cells of the rat exorbital lacrimal gland was studied by electron microscope morphological and cytochemical techniques. Immature secretory granules at the inner face of the Golgi apparatus were frequently attached to a narrow cisternal structure similar to GERL as described in neurons by Novikoff et al. (Novikoff, P. M., A. B. Novikoff, N. Quintana, and J.-J. Hauw. 1971. J. Cell Bio. 50:859-886). In the lacrimal gland. GERL was located adjacent to the inner Golgi saccule, or separated from it by a variable distance. Portions of GERL were often closely paralleled by modified cisternae of rough endoplasmic reticulum (RER), which lacked ribosomes on the surface adjacent to GERL. Diaminobenzidine reaction product of the secretory enzyme peroxidase was localized in the cisternae of the nuclear envelope, RER, peripheral Golgi vesicles, Golgi saccules, and immature and mature secretory granules. GERL was usually free of peroxidase reaction product or contained only a small amount. Thiamine pyrophosphatase reaction product was present in two to four inner Golgi saccules; occasionally, the innermost saccule was dilated and fenestrated, and contained less reaction product than the next adjacent saccule. Acid phosphatase (AcPase) reaction product was present in GERL, immature granules, and, rarely, in the innermost saccule, but not in the rest of the Golgi saccules. Thick sections of AcPase preparations viewed at 100 kV revealed that GERL consisted of cisternal, and fenestrated or tublular portions. The immature granules were attached to GERL by multiple connections to the tublular portions. These results suggest that, in the rat exorbital lacrimal gland, the Golgi saccules participate in the transport of secretory proteins, and that GERL is involved in the formation of secretory granules.  相似文献   

17.
Glycosaminoglycans (GAGs) and glycoproteins (GPs) are essential components for dentinogenesis. We have examined rat odontoblasts, predentin, and dentin decalcified with EDTA and stained with: 1) Spicer's hig-iron diamine-thiocarbohydrazide-silver proteinate (HID-TCH-SP) method for sulfated glycoconjugates, and 2) Thiéry's periodate-thiocarbohydrazide-silver proteinate (PA-TCH-SP) method for vicinal glycol-containing glycoconjugates. HIS-TCH-SP stained distended portions of Golgi saccules and secretory granules. The predentin contained three times the number of HID-TCH-SP stain precipitates when compared to the mineralization front of the dentin matrix. PA-TCH-SP weakly stained membranes of Golgi saccules and cisternae of rough endoplasmic reticulum (RER), whereas stronger staining was observed in secretory granules, lysosomes, and multivesicular bodies (MVBs). Collagen fibrils in predentin demonstrated moderate PA-TCH-SP staining. In contrast, strong PA-TCH-SP staining was observed on and between collagen fibrils in the mineralization front of the dentin matrix. TCH-SP controls of unosmicated specimens lacked significant staining, however, osmicated control specimens did contain some TCH-SP stain deposits in the mineralization front. These results indicate that sulfated and vicinal glycol-containing glycoconjugates are packaged in the same type of secretory granule and released into the extracellular matrix; subsequently vicinal glycol-containing glycoconjugates concentrate in the calcification front, whereas sulfated glycoconjugates accumulate in the predentin and are either removed or masked to staining in the dentin.  相似文献   

18.
Albumin was isolated immunologically from various subcellular fractions from livers of adult male rats receiving an intraperitoneal injection of [3H]leucine to investigate the kinetics and pathway of subcellular transfer of newly synthesized albumin during secretion. At appropriate time intervals, livers were excised and fractionated into endoplasmic reticulum and Golgi apparatus. Golgi apparatus were further subfractionated into cisternae and secretory vesicles. In endoplasmic reticulum fractions, labeled albumin appeared within 7.5 min of injection of isotope, followed by a rapid decline in specific activity. Albumin in Golgi apparatus was labeled and concentrated in secretory vesicles over 25 min. The radioactivity in albumin per mg total protein was highest in secretory vesicles and insignificant in the cisternal fraction. Labeled albumin was present in serum by 30 min and radioactivity in serum albumin reached a plateau within 60–90 min after injection of isotope. Results provide evidence for the migration of albumin from its site of synthesis on endoplasmic reticulum membrane-bound polyribosomes to its site of secretion into the circulation via the Golgi apparatus. The pathway of albumin transport to secretory vesicles is suggested to involve peripheral elemenst of the Golgi apparatus. Secretory vesicle formation and maturation required 20 to 30 min for completion, via a mechanism whereby the inner spaces of the central saccules may be bypassed.  相似文献   

19.
Human blood group A antigenicity of glycoproteins is retained on epon-embedded jejunum sections after glutaraldehyde fixation and osmium treatment. The intracellular location of molecules bearing these determinants was visualized in the four types of epithelial cells of A+ rabbit jejunum sections with immuno-colloidal gold labeling. The brush border membrane and in particular the glycocalyx of absorbing cells as well as the secretory granules of goblet and Paneth cells were heavily labeled. In enteroendocrine cells, the membrane of secretory granules and not their content was lightly labeled. The differential labeling of secretory or membrane bound glycoproteins is accompanied by different labels of the Golgi complex as expected if labeling of the Golgi saccules was due to the presence of glycoproteins in transit. In all cases the label is primarily concentrated in only half the cisternae on the trans side of the Golgi stacks. In absorbing cells, structures have been revealed in the terminal web that could be related to the brush border membrane and consequently implicated in its biogenesis. The fibrillar material of the glycocalyx appears as highly labeled tangled structures which apparently proceed from densely stained "carrier" vesicles arising from the Golgi apparatus. Vesicles fusing at the lower part of microvilli could result of integration of this material into the lightly labeled vesicles strictly found in the terminal web. These last vesicles could also contain newly synthesized brush border hydrolases.  相似文献   

20.
Summary In mice most of the ependymal cells of the subcommissural organ (SCO cells) are densely packed with dilated cisternae of the endoplasmic reticulum (ER) containing either finely granular or flocculent materials. The well developed supra-nuclear Golgi apparatus consists of stacks of flattened saccules and small vesicles; the two or three outer Golgi saccules are moderately dilated and exhibit numerous fenestrations; occasional profiles suggesting the budding of coated vesicles and formation of membrane-bound dense bodies from the ends of the innermost Golgi saccules are seen. A few coated vesicles and membrane-bound dense bodies of various sizes and shapes are also found in the Golgi region.The contents of the dilated ER cisternae are stained with periodic acid-silver methenamine techniques. In the Golgi complex the two or three inner saccules are stained as deeply as the dense bodies, and the outer saccules are only slightly stained. The stained contents of ER cisternae are more electron opaque than those of the outer but less opaque than those of the inner Golgi saccules and the dense bodies.Acid phosphatase activities are localized in the dense bodies, some of the coated vesicles in the Golgi region, and in the one or two inner Golgi saccules.On the basis of these results the following conclusions have been reached: (1) In mouse SCO cells the finely granular and the flocculent materials in the lumen of ER cisternae contain a complex carbohydrate(s) which is secreted into the ventricle to form Reissner's fiber; (2) the secretory substance is assumed to be synthesized by the ER and stored in its cisternae, and the Golgi apparatus might play only a minor role, if any, in the elaboration of the secretory material; (3) most of the dense bodies in the mouse SCO cells are lysosomal in nature instead of being so-called dark secretory granules.Sponsored by the National Science Council, Republic of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号