首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The natural 15N abundance (15N value) in acetylpropyl derivatives of amino acids and in ethyloxycarbonyl derivatives of polyamines was determined using a gas chromatography/combustion/mass spectrometer-(GC/C/MS). 15N value determined for 12 amino acids and five polyamines by GC/C/MS were identical to those obtained by a direct combustion method using an automatic nitrogen and carbon analysis (ANCA) mass spectrometer, the difference being less than 1.0% in most cases. The GC/C/MS method was used to analyse 15N values in the amino acids and polyamines from root nodules of pea and faba bean and from stem nodules of Sesbania rostrata. The analysis of 15N values revealed that homospermidine had high 15N values, as much as +40%, while the amino acids investigated had 15N values between -3 and +6%, putrescine between +2 and +8%, cadaverine between +1 and +7%, spermidine between -2 and +4%, and spermine between 0 and +6%. The mechanism of 15N enrichment in homospermidine is discussed.  相似文献   

3.
A karyopherin (LeKAP1) cDNA was isolated from tomato plants. The deduced LeKAP1 protein sequence of 527 amino acids showed similarity to other plant karyopherin proteins. When LeKAP1 was expressed in a yeast two-hybrid system together with the gene coding for the capsid protein (CP) of the tomato yellow curl leaf virus (TYLCV), it interacted directly with CP. Thus, LeKAP1 may be involved in the nuclear import of TYLCV CP and, potentially, the TYLCV genomes during viral infection of the host tomato cells.  相似文献   

4.
An error occurs in the calibration of xylem pressure potential() against leaf-water potential () when the calibration is madeusing plant material in which the water stress has been inducedartificially after excision. The impostion of water stress afterexcision affects the determination more than it affects , consequentlythe relationship between these two indices of water stress isaltered. Care should be exercised to ensure that identical proceduresare adopted during . calibrations and during susbsequent fieldmeasurements of with the pressure-chamber apparatus.  相似文献   

5.
The Meaning of Matric Potential   总被引:6,自引:1,他引:5  
The commonly used equation, = P - + , which describes thepartitioning of plant water potential, , into components ofhydrostatic pressure, P, osmotic pressure, , and matric potential,, is misleading. The term , which is supposed to show the influenceof a solid phase on , is zero if a consistent definition ofpressure is used in the standard thermodynamic derivation. However,it can be usefully defined by = + D, where D is the osmoticpressure of the equilibrium dialysate of the system. The practicaland theoretical significance of this definition is discussed.  相似文献   

6.
Changes in components of leaf water potential during soil waterdeficits influence many physiological processes. Research resultsfocusing on these changes during desiccation of peanut (Arachishypogeae L.) leaves are apparently not available. The presentstudy was conducted to examine the relationships of leaf waterl, solute s and turgor p potentials, and percent relative watercontent (RWC) of peanut leaves during desiccation of detachedleaves and also during naturally occurring soil moisture deficitsin the field. The relationship of p to l and RWC was evaluated by calculatingp from differences in l and s determined by thermocouple psychrometryand by constructing pressure-volume (P-V) curves from the land RWC measurements. Turgor potentials of ‘Early Bunch’and ‘Florunner’ leaves decreased to zero at l of–1.2 to –1.3 MPa and RWC of 87%. There were no cultivardifferences in the l at which p became zero. P-V curves indicatedthat the error of measuring s after freezing due to dilutionof the cellular constituents was small but resulted in artefactualnegative p values. Random measurements on two dates of l, s, and calculation ofp from well-watered and water-stressed field plots consistingof several genotypes indicated that zero p occurred at l of–1.6 MPa. It was concluded that the relationships of p,l, s, and RWC of peanut leaves were similar to leaves of othercrops and that these relationships conferred no unique droughtresistance mechanism to peanut.  相似文献   

7.
An equation is derived expressing average turgor pressure ofa leaf (p) as a function of relative water content (RWC). Basedon this derivation, the relationships of the bulk elastic modulus(v) and both RWC and p, are formulated and discussed. The bulkelastic modulus (v) becomes zero for p = 0, that is at the turgorloss point for the leaf. At full water saturation the valueof ev is proportional to the water saturation turgor potentialp(max). The factor relating P and v (structure coefficient ,Burstrom, Uhrstr?m and Olausson, 1970) changes only very littlefor values of p, which are not too close to zero. An exampleis given for the calculation from experimental data of the turgorpressure function, the structure coefficient function, and thev function. Key words: Cell wall, Turgor pressure, Bulk elastic modulus  相似文献   

8.
In recent years alternative ways have been proposed to transformmeasurements of leaf water potential, , and relative water content,R*, in order to derive values of osmotic pressure at full turgidityin leaves and shoots, o(when 0). Two types of transformationsare usually considered: 1/ versus R* and versus 1/R*, and linearregression is used to fit the data in the region where turgoris thought to be zero. It appears that when o is estimated bylinear extrapolation of 1/Psi; versus R* then apoplastic watermight not influence the accuracy of o but when the versus \/R*transformation is used apoplastic water causes an underestimateof o. We examine the accuracy of the estimate of o obtainedfrom the two transformations when there are random errors in, systematic errors in , and when the osmotic solutions arenon-ideal. The 1/ versus R* transformation generally producesthe best estimate of 0 by linear extrapolation.  相似文献   

9.
The water potential () at which stomata completed closure (8Lmin)was determined for pearl millet (Pennisetum americanum [L.]Leeke) at two growth stages by monitoring changes in leaf conductance(gL) and following shoot detachment. Leaf water status wasevaluated concurrently using a pressure-volume (P-V) technique. In a pot experiment with young vegetative plants, 8Lmin closelyapproximated to the estimated at zero turgor (u) both for controland for drought-conditioned plants which had osmotically adjusted.However, for penultimate leaves of field-grown flowering plants,8Lmin was found to be 0.61 (irrigated plants) and 0.87 (droughtedplants) MPa below u. In drought-stressed field-grown plants,osmotic adjustment (characterized by a decrease in solute (osmotic)potential (s ) at both full hydration and zero turgor) was insufficientto maintain a positive bulk leaf turgor potential (p) once had declined to below about -1.5 MPa. It is suggested that localizedadjustment by the stomatal complex in response to environmentaldifferences, leaf ageing and/or ontogenetic change, is responsiblefor the uncoupling of stomatal from bulk leaf water status. Key words: Stomata, Water stress, Pennisetum americanum  相似文献   

10.
Ber (Ziziphus mauritiana Lamk.) is a major fruit tree crop of the north-west Indian arid zone. In a study of the physiological basis of drought tolerance in this species, two glasshouse experiments were conducted in which trees were droughted during single stress-cycles. In the first experiment, during a 13 d drying cycle, pre-dawn leaf water (leaf) and osmotic () potentials in droughted trees declined from -0.5 and -1.4 MPa to -1.7 and -2.2 MPa, respectively, for a decrease in relative water content () of 14%. During drought stress, changes in sugar metabolism were associated with significant increases in concentrations of hexose sugars (3.8-fold), cyclitol (scyllo-inositol; 1.5-fold), and proline (35-fold; expressed per unit dry weight), suggesting that altered solute partitioning may be an important factor in drought tolerance of Ziziphus. On rewatering pre-dawn leaf and recovered fully, but remained depressed by 0.4 MPa relative to control values, indicating that solute concentration per unit water content had changed during the drought cycle.Evidence for osmotic adjustment was provided from a second study during which a gradual drought was imposed. Pressure-volume analysis revealed a 0.7 MPa reduction in osmotic potential at full turgor, with leaf at turgor loss depressed by 1 MPa in drought-stressed leaves. Coupled with osmotic adjustment, during gradual drought, was a 65% increase in bulk tissue elastic modulus (wall rigidity) which resulted in turgor loss at the same in both stressed and unstressed leaves. The possible ecological significance of maintenance of turgor potential and cell volume at low water potentials for drought tolerance in Ziziphus is discussed.Keywords: Ziziphus mauritiana, drought, solute accumulation, osmotic adjustment, proline.   相似文献   

11.
Data from pressure-volume (PV) analysis may be submitted totransformation I [i.e. leaf water potential (1) versus inverserelative water content (1/R)] or to transformation II (i.e.1/1 versus R). This may cause an essential distortion of theerror structure especially in transformation II due to the relativelylarge range which is to be covered by the 1/1 ratio. Similarly,logarithmic transformation of leaf turgor potential (P) whenderiving the sensitivity factor of elasticity (ß)by linear regression from values of In p and 1/R may distortthe error structure. In order to investigate the magnitude ofthe distortion effect on parameters derived from PV analysisby regression a non-linear regression procedure was comparedwith the common linear procedure when calculating p from ßin the turgid region and leaf osmotic potential (P) in boththe turgid and non-turgid region. As test plants we used fieldgrown species of spring barley (Hordeum distichum L., cvs Gunnarand Alis). The results show that transformations and applicationof linear regression procedures distort the error structureof p more than the error structure of ', which was only slightlyaffected. However, we recommend the use of the non-linear procedurein both cases. Furthermore, from PV analysis, obtained by thermocouple hygrometryon living and killed leaf tissue, respectively, we derived themathematical basis for calculating the apoplastic water fraction(Ra). Ra was 0.15 at R= 1 and decreased with dehydration. The equations describing the relation between and R and betweenp and R were extended to take into account the apoplastic waterfraction. Key words: Apoplastic water, distortion errors, non-linear regression, pressure-volume curves  相似文献   

12.
Seed germination rates (GR =inverse of time to germination)are sensitive to genetic, environmental, and physiological factors.We have compared the GR of tomato (Lycopersicon esculentum Mill.)seeds of cultivar T5 to those of rapidly germinating L. esculentumgenotypes PI 341988 and PI 120256 over a range of water potential(). The influence of seed priming treatments and removal ofthe endosperm/testa cap enclosing the radicle tip on germinationat reduced were also assessed. Germination time-courses atdifferent 's were analysed according to a model that identifieda base, or minimum, allowing germination of a specific percentage(g) of the seed population (b(g)), and a ‘hydrotime constant’(H) indicating the rate of progress toward germination per MPa.h.The distribution of b(g) determined by probit analysis was characterizedby a mean base (b) and the standard deviation in b among seeds(b). The three derived parameters, b, b) and H, were sufficientto predict the time-courses of germination of intact seeds atany . A normalized time-scale for comparing germination responsesto reduced is introduced. The time to germination at any (tg())can be normalized to be equivalent to that observed in water(tg(0)) according to the equation tg(0)=[l–(/b(g))]tg().PI 341988 seeds were more tolerant of reduced and had a morerapid GR than T5 seeds due to both a lower b and a smaller H.The rapid germination of PI 120256, on the other hand, couldbe attributed entirely to a smaller H. Seed priming (6 d in–1.2 MPa polyethylene glycol 8000 solution at 20 ?C followedby drying) increased GR at all >b(g), but did not lower theminimum allowing germination; i.e. priming reduced H withoutlowering b. Removing the endosperm/testa cap (cut seeds) markedlyincreased GR and lowered the mean required to inhibit germinationby 0.7 to 0.9 MPa. However, this resulted primarily from downwardadjustment in b during the incubation of cut seeds at low inthe test solutions. The difference in b between intact and cutseeds incubated at high was much less (0.l MPa), indicatingthat at the time of radicle protrusion, the endosperm had weakenedto the point where it constituted only a small mechanical barrier.In the intact seed, endosperm weakening and the downward adjustmentin embryo b ceased at < –0.6 MPa, while the reductionin H associated with priming proceeded down to at least –1.2MPa. Based on these data and on the pressure required to pushthe embryos from the seeds at various times after imbibition,it appears that the primary effect of priming was to shortenthe time required for final endosperm weakening to occur. However,as priming increased GR even in cut seeds, priming effects onthe embryo may control the rate of endosperm weakening. Key words: tomato, Lycopersicon esculentum Mill., water potential, germination rate, seed priming, genetic variation  相似文献   

13.
An increase of cytosolic Ca2 in the unicellular green alga Eremosphaera viridis activities Ca2-dependent K channels causing a hyperpolarization of the plasma membrane. Data from parallel calcium, and potential measurements were combined with I/V relationships. This yielded a steep Ca2-dependence of K channels with a co-operativity of 4 and an affinity of 300 nM.Key words: Eremosphaera viridis, plasma membrane, Ca2-dependent K channel, co-operative binding.   相似文献   

14.
Transformed poplars overexpressing -glutamylcysteine synthetase (-ECS) in the chloroplast (Lggs) were used to investigate chloroplastic biosynthesis of glutathione (GSH). In Lggs leaves, GSH contents were enhanced by up to 3.7 fold. In general, the highest GSH contents were observed in lines with highest -glutamylcysteine (-EC) contents. These lines had relatively low glycine. In darkness, foliar GSH decreased and -EC increased. Illumination of pre-darkened Lggs in air resulted in a 5-fold decrease in the -EC : GSH ratio. This light-induced decrease was largely abolished if leaves were illuminated at high CO2. Consequently, the -EC : GSH ratio of illuminated leaves was much higher at high CO2 than in air. At high CO2 total foliar amino acids were higher, but glycine and serine were lower, than in air. These results suggest that photorespiratory glycine is used in chloroplastic GSH synthesis. Despite this net CO2 fixation was similar in Lggs to untransformed poplars. Pre-illuminated leaf discs from Lggs, and poplars overexpression -ECS in the cytosol (ggs), were incubated in darkness with a range of metabolites. After 15 h, discs for both types of transformant incubated on water had accumulated high levels of -EC and showed marked increases in the -EC : GSH ratio. Feeding glycine, serine, glycollate or phosphoserine, attenuated the dark-induced changes in the -EC : GSH ratio, whereas 3-phosphoglycerate (PGA), phosphoenolpyruvate, glycerate, and hydroxypyruvate did not. Glycine produced from glycollate was therefore required for maximal GSH accumulation in both the chloroplastic and cytosolic compartment. Production of glycine from PGA failed to meet the demand of increased GSH synthetic capacity.  相似文献   

15.
The effects of transpiration rate on the vertical gradientsof leaf and stem xylem water potential ( and ) were examinedusing hydroponic sunflower plants. Transpiration was variedby stepwise alterations of environmental conditions. The gradientsof and were relatively small (2.3 and 0.8 x 105 Pa m–1)when transpiration rates approached zero, but increased sharplyto 5.4 and 2.3 x 105 Pa m–1 as transpiration increased.However, the gradients were independent of transpiration ratesabove 0.4 g dm–2 h–1 owing to variability of theplant resistance. The gradients of I were usually less thanhalf those of I. 1 in individual leaves remained constant over a wide range oftranspiration rates (0.4—2.4 g dm–2 h–1) andeach leaf possessed a characteristic plateau value related toits elevation. I responded similarly but was approximately 2.0x 105 Pa higher than I at the same elevation. Identical resultswere obtained regardless of the procedure employed to vary transpiration. The drop in water potential between stem and leaf implies thatthe leaf resistance is appreciable. This was confirmed usingrapidly transpiring excised leaves freely supplied with water.I increased by 2.0–2.5 x 105 Pa following removal of theroot resistance but remained 2 x 105 Pa lower than similar excisedleaves in darkness. Furthermore, I in excised leaves remainedconstant over a wide range of transporting rates, demonstratingthat the leaf resistance is also variable. The results are discussed in relation to previous reports.  相似文献   

16.
The euryhaline charophyte Lamprothamnium papulosum (Wallr.)J. Gr. was adapted to media with decreasing salinities rangingfrom 550 to 0 mosmol kg–1. Vegetative plants grown inmedia with osmotic pressures (0) in the range of 550 to 130mosmol kg–1 maintained a constant turgor pressure () at309 + 7 mosmol kg–1. The ions K+, Na+ and Cl–, werethe predominant solutes in the vacuole. Changes in their concentrationsaccount for the variation in internal osmotic pressure (1) with,0. The divalent ions Mg2+, Ca2+ and were also present in significant amounts, but their concentrationsdid not alter with changes in, 0. In cells subjected to hypo-osmotic shock the regulation of was incomplete. The turgor pressure increased from 302 to 383mosmol kg–1. The first rapid response to the sudden decreasein 0 was a loss of K+ and Cl. In contrast to the decreasein ionic concentrations an accumulation of sucrose occurredwhich could account for the increase of . The increase in sucroseconcentration started 24 to 48 h after the downshock and reachedits highest value after 3 to 4 weeks. The sucrose concentrationin the vacuole was up to 320 mol m–3. During this timethe ionic content continued to decrease but did not counterbalancethe sucrose concentration sufficiently to regain the original. High sucrose levels accompanied by an enhanced were also observedduring the period of fructification (sexual reproduction: formationof antheridia and oogonia) in Lamprothamnium kept under conditionsof constant salinity. It is concluded that high sucrose content and elevated arecharacteristic of sexual reproduction in this charophyte. Lamprothamniumis able to tolerate different during various developmentalstages (e.g. vegetative and reproductive phases). Key words: Lamprothamnium papulosum, sucrose, turgor pressure  相似文献   

17.
The Structure and Functions of Xyloglucan   总被引:14,自引:1,他引:13  
Xyloglucan is a polysaccharide found in the primary cell wallsof all higher plants examined. Its cellulose-like backbone,which is about 0.15 to 1.5 µm long, consists of 300 to3 000 ß-(14)-linked D-glucopyranose residues. About60–75% (or, in grasses, about 30–40%) of the glucoseresidues have side-chains attached to position 6. The majorside-chains are: D-xylopyranosyl--1 -, D-galactopyranosyl-ß-(12)-D-xylopyranosyl--I , L-arabinofuranosyl-(1 -2)-D-xylopyranosyl--1-, and (except in grasses) L.-fucopyranosyl--(1 -2)-D-galactopyranosyl-ß-(1-2)-D-xylopyranosyl--1-. There is some regularity in the distribution of these side-chainsalong the backbone. Xyloglucan plays two very different r?les in the control ofcell growth: (a) as a major building material of the wall [concentrationof xyloglucan in the wall in vivo 10% (w/v)] it probably directlydictates wall extensibility and, therefore, the rate of cellexpansion and (b) it can be broken down to a fucose-containingoligosaccharide which [at a concentration of 0.0000001% (w/v)]exerts a hormone-like anti-auxin effect on growth. In addition,xyloglucan lacking fucose is used by certain dicotyledonousseeds as a food reserve which is mobilized after germination.Xyloglucan is, therefore, the subject of considerable currentinterest in several apparently disparate areas of botany. Key words: Xyloglucan, ‘oligosaccharin’, hemicellulose, auxin, anti-auxin, growth, cell walls, reserve carbohydrate  相似文献   

18.
The G-protein activator mastoparan and its analogues are becoming popular tools for studying signalling in plants. Therefore the abilities of mastoparan, mas7, mas8, and mas17 to activate phospholipase C (PLC), PLD and to induce the deflagellation response in Chlamydomonas moewusii Gerloff were compared. The aim was to test whether their relative potencies in a plant system resemble those reported for bovine brain Go and Gi, as is generally assumed, and to determine at which concentrations cells become permeabilized, a known effect of higher concentrations. The concentrations at which 50% deflagellation was induced, were 2.0 M mastoparan, 3.0 M mas8, 3.6 M mas7, and 5.8 M mas17. Similar activities were found for the production of phosphatidic acid, which is the result of the combined activities of PLD and PLC (together with diacylglycerol kinase). PLD activity alone was measured in vivo by its ability to phosphatidylate n-butanol. Surprisingly, the concentrations that stimulated maximum activity were about 10-fold lower (1 M) than those that stimulated maximum PLC activity (10 M). Mas17 was an exception with both maxima above 10 M. All the compounds except mas17 permeabilized C. moewusii cells. The concentrations at which 50% of the cells were permeabilized to Evan's blue were 7.4 M mas8, 16.0 M mas7 and 22.4 M mastoparan. In conclusion, only mastoparan itself and the least active analogue mas17 induced maximum deflagellation, PLC and PLD activities without permeabilizing the cells.Keywords: Chlamydomonas, deflagellation, mastoparan, phospholipases C and D, phospholipid metabolism   相似文献   

19.
Leaf diffusion resistance interpreted as stomatal resistance,leaf water potential (w), solute potential (s) and leaf turgorpotential (p) of the chilling sensitive species Phaseolus vulgariswere determined during chilling at 4 °C in the light. Bothchill-hardened and non-hardened plants were used. For comparison,the chilling resistant species Pisum sativum was also used. The results for chilled P. sativum were similar to those obtainedfor chill-hardened P. vulgaris plants receiving a chilling treatment.In both cases a reduction in stomatal aperture and the maintenanceof a positive leaf turgor were the responses to chilling. Leavesof chilled but non-hardened P. vulgaris plants were found tomaintain open stomata throughout the chilling treatment despitea severe wilt developing after 7 h at 4 °C. This was incontrast to the chill-resistant P. sativum. which showed a rapidclosing and subsequent re-opening of the stomata to a new reducedaperture. During the first 12 h of chilling wof P. vulgaris leaves changedfrom –0.47 MPa to –1.24 MPa. On more prolonged chillingw tended to return to pre-chilling values. In addition. p decreasedfrom 0.42 MPa to zero after only 9 h of chilling, and remainedat this value for the remainder of the chilling period, s, changedrapidly from –0.89 MPa to –1.35 MPa in the first7.5 h, and after 9 h. w and s, were equal, i.e. zero p. In contrast,the chilling resistant plant P. sativum maintained a positivep throughout the chilling period, and there was little differencebetween values of w, and s in control and chilled leaves. Key words: Chilling, Stomata, ater relations, Phaseolus vulgaris, Pisum sativum  相似文献   

20.
Aspects of the water relations of spring wheat (Triticum aestivumL.) are described for cultivars Highbury (low ABA) and TW269/9(high ABA), and low and high ABA accumulating F6selections derivedfrom a cross between them. In a pot experiment, pressure-volume (P-V) curves were constructedfor main stem leaf four (MSL4) of well-watered plants of Highburyand TW269/9. Estimates of solute potential (2) from these curveswere similar for the two cultivars, but varied with the timeof sampling and the time allowed for hydration in dim light. In a field experiment with four low and four high ABA F6lines,P-V curves for flag leaves from both droughted and irrigatedplants gave at both zero turgor (p) and zero water potential(1) which differed with degree of stress, sampling time andgenotype. 1was strongly dependent on the initialL of the leafand was reduced on average by c. 0.4 MPa per MPa decline ininitial L.5, was lower (more negative) by c. 0.1-MPa in theafternoon than in the morning. Overall, was also 0.1 MPa lowerin low ABA lines than in high ABA lines. In another field experiment, flag leaves of five low and fivehigh ABA F6lines were sampled over a 4 week period from droughtedplots and L and 5, measured (the latter by osmometry with expressedsap). For these leaves 5, at zero p or zero L was consistentlylower by 0.3–0.5 MPa than estimates of 5, from the P-Vcurves with flag leaves. However, data for the low ABA lineswere again lower (by c. 0.1 MPa) than those for high ABA lines. The consequences of these differences in 1 are discussed inrelation to the stimulation of ABA accumulation in low and highABA selections. Key words: Water potential, Solute potential, P-V curves, Wheat (Triticum aestivum), Drought stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号