首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The centrosomal protein, CDK5RAP2, is a microcephaly protein that regulates centrosomal maturation by recruitment of a γ-tubulin ring complex (γ-TuRC) onto centrosomes. In this report, we identified a novel human centrosomal protein, Cep169, as a binding partner of CDK5RAP2, a member of microtubule plus-end-tracking proteins (+TIPs). Cep169 interacts directly with CDK5RAP2 through CM1, an evolutionarily conserved domain, and colocalizes at the pericentriolar matrix (PCM) around centrioles with CDK5RAP2. In addition, Cep169 interacts with EB1 through SxIP-motif responsible for EB1 binding, and colocalizes with CDK5RAP2 at the microtubule plus-end. EB1-binding–deficient Cep169 abolishes EB1 interaction and microtubule plus-end attachment, indicating Cep169 as a novel member of +TIPs. We further show that ectopic expression of either Cep169 or CDK5RAP2 induces microtubule bundling and acetylation in U2OS cells, and depletion of Cep169 induces microtubule depolymerization in HeLa cells, although Cep169 is not required for assembly of γ-tubulin onto centrosome by CDK5RAP2. These results show that Cep169 targets microtubule tips and regulates stability of microtubules with CDK5RAP2.  相似文献   

2.
The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.  相似文献   

3.
Mutations in cdk5rap2 are linked to autosomal recessive primary microcephaly, and attention has been paid to its function at centrosomes. In this report, we demonstrate that CDK5RAP2 localizes to microtubules and concentrates at the distal tips in addition to centrosomal localization. CDK5RAP2 interacts directly with EB1, a prototypic member of microtubule plus-end tracking proteins, and contains the basic and Ser-rich motif responsible for EB1 binding. The EB1-binding motif is conserved in the CDK5RAP2 sequences of chimpanzee, bovine, and dog but not in those of rat and mouse, suggesting a function gained during the evolution of mammals. The mutation of the Ile/Leu-Pro dipeptide within the motif abolishes EB1 interaction and plus-end attachment. In agreement with the mutational analysis, suppression of EB1 expression inhibits microtubule tip-tracking of CDK5RAP2. We have also found that the CDK5RAP2–EB1 complex regulates microtubule dynamics and stability. CDK5RAP2 depletion by RNA interference impacts the dynamic behaviors of microtubules. The CDK5RAP2–EB1 complex induces microtubule bundling and acetylation when expressed in cell cultures and stimulates microtubule assembly and bundle formation in vitro. Collectively, these results show that CDK5RAP2 targets growing microtubule tips in association with EB1 to regulate microtubule dynamics.  相似文献   

4.
Human Cep192 is required for mitotic centrosome and spindle assembly   总被引:5,自引:0,他引:5  
As cells enter mitosis, centrosomes dramatically increase in size and ability to nucleate microtubules. This process, termed centrosome maturation, is driven by the accumulation and activation of gamma-tubulin and other proteins that form the pericentriolar material on centrosomes during G2/prophase. Here, we show that the human centrosomal protein, Cep192 (centrosomal protein of 192 kDa), is an essential component of the maturation machinery. Specifically, we have found that siRNA depletion of Cep192 results in a complete loss of functional centrosomes in mitotic but not interphase cells. In mitotic cells lacking Cep192, microtubules become organized around chromosomes but rarely acquire stable bipolar configurations. These cells contain normal numbers of centrioles but cannot assemble gamma-tubulin, pericentrin, or other pericentriolar proteins into an organized PCM. Alternatively, overexpression of Cep192 results in the formation of multiple, extracentriolar foci of gamma-tubulin and pericentrin. Together, our findings support the hypothesis that Cep192 stimulates the formation of the scaffolding upon which gamma-tubulin ring complexes and other proteins involved in microtubule nucleation and spindle assembly become functional during mitosis.  相似文献   

5.
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein gamma-tubulin. In mammals, gamma-tubulin associates with additional proteins into a large complex, the gamma-tubulin ring complex (gammaTuRC). We characterize NEDD1, a centrosomal protein that associates with gammaTuRCs. We show that the majority of gammaTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of gamma-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to gammaTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of gamma-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of gamma-tubulin to the centrosome.  相似文献   

6.
The gamma-tubulin ring complex (gammaTuRC) is important for microtubule nucleation from the centrosome. In addition to gamma-tubulin, the Drosophila gammaTuRC contains at least six subunits, three of which [Drosophila gamma ring proteins (Dgrips) 75/d75p, 84, and 91] have been characterized previously. Dgrips84 and 91 are present in both the small gamma-tubulin complex (gammaTuSC) and the gammaTuRC, while the remaining subunits are found only in the gammaTuRC. To study gammaTuRC assembly and function, we first reconstituted gammaTuSC using the baculovirus expression system. Using the reconstituted gammaTuSC, we showed for the first time that this subcomplex of the gammaTuRC has microtubule binding and capping activities. Next, we characterized two new gammaTuRC subunits, Dgrips128 and 163, and showed that they are centrosomal proteins. Sequence comparisons among all known gammaTuRC subunits revealed two novel sequence motifs, which we named grip motifs 1 and 2. We found that Dgrips128 and 163 can each interact with gammaTuSC. However, this interaction is insufficient for gammaTuRC assembly.  相似文献   

7.
Centrosome reduction during gametogenesis and its significance   总被引:1,自引:0,他引:1  
Animal spermatids and primary oocytes initially have typical centrosomes comprising pairs of centrioles and pericentriolar fibrous centrosomal proteins. These somatic cell-like centrosomes are partially or completely degenerated during gametogenesis. Centrosome reduction during spermiogenesis comprises attenuation of microtubule nucleation function, loss of pericentriolar material, and centriole degeneration. Centrosome reduction during oogenesis is due to complete degeneration of centrioles, which leads to dispersal of the pericentriolar centrosomal proteins, loss of replicating capacity of the spindle poles, and switching to acentrosomal mode of spindle organization. Oocyte centrosome reduction plays an important role in preventing parthenogenetic embryogenesis and balancing centrosome number in the embryonic cells.  相似文献   

8.
The gamma-tubulin ring complex (gammaTuRC) is a protein complex of relative molecular mass approximately 2.2 x 10(6) that nucleates microtubules at the centrosome. Here we use electron-microscopic tomography and metal shadowing to examine the structure of isolated Drosophila gammaTuRCs and the ends of microtubules nucleated by gammaTuRCs and by centrosomes. We show that the gammaTuRC is a lockwasher-like structure made up of repeating subunits, topped asymmetrically with a cap. A similar capped ring is also visible at one end of microtubules grown from isolated gammaTuRCs and from centrosomes. Antibodies against gamma-tubulin label microtubule ends, but not walls, in centrosomes. These data are consistent with a template-mediated mechanism for microtubule nucleation by the gammaTuRC.  相似文献   

9.
CDK5RAP2 is a centrosomal protein known to be involved in the regulation of the γ-tubulin ring complex and thus the organization of microtubule arrays. However, the mechanism by which CDK5RAP2 is itself recruited to centrosomes is poorly understood. We report here that CDK5RAP2 displays highly dynamic attachment to centrosomes in a microtubule-dependent manner. CDK5RAP2 associates with the retrograde transporter dynein-dynactin and contains a sequence motif that binds to dynein light chain 8. Significantly, disruption of cellular dynein-dynactin function reduces the centrosomal level of CDK5RAP2. These results reveal a key role of the dynein-dynactin complex in the dynamic recruitment of CDK5RAP2 to centrosomes.  相似文献   

10.
As the primary microtubule-organizing centers, centrosomes require γ-tubulin for microtubule nucleation and organization. Located in close vicinity to centrosomes, the Golgi complex is another microtubule-organizing organelle in interphase cells. CDK5RAP2 is a γ-tubulin complex-binding protein and functions in γ-tubulin attachment to centrosomes. In this study, we find that CDK5RAP2 localizes to the Golgi complex in an ATP- and centrosome-dependent manner and associates with Golgi membranes independently of microtubules. CDK5RAP2 contains a centrosome-targeting domain with its core region highly homologous to the Motif 2 (CM2) of centrosomin, a functionally related protein in Drosophila. This sequence, referred to as the CM2-like motif, is also conserved in related proteins in chicken and zebrafish. Therefore, CDK5RAP2 may undertake a conserved mechanism for centrosomal localization. Using a mutational approach, we demonstrate that the CM2-like motif plays a crucial role in the centrosomal and Golgi localization of CDK5RAP2. Furthermore, the CM2-like motif is essential for the association of the centrosome-targeting domain to pericentrin and AKAP450. The binding with pericentrin is required for the centrosomal and Golgi localization of CDK5RAP2, whereas the binding with AKAP450 is required for the Golgi localization. Although the CM2-like motif possesses the activity of Ca2+-independent calmodulin binding, binding of calmodulin to this sequence is dispensable for centrosomal and Golgi association. Altogether, CDK5RAP2 may represent a novel mechanism for centrosomal and Golgi localization.  相似文献   

11.
CDK5RAP2 is a human microcephaly protein that contains a γ-tubulin complex (γ-TuC)-binding domain conserved in Drosophila melanogaster centrosomin and Schizosaccharomyces pombe Mto1p and Pcp1p, which are γ-TuC-tethering proteins. In this study, we show that this domain within CDK5RAP2 associates with the γ-tubulin ring complex (γ-TuRC) to stimulate its microtubule-nucleating activity and is therefore referred to as the γ-TuRC-mediated nucleation activator (γ-TuNA). γ-TuNA but not its γ-TuC-binding-deficient mutant stimulates microtubule nucleation by purified γ-TuRC in vitro and induces extensive, γ-TuRC-dependent nucleation of microtubules in a microtubule regrowth assay. γ-TuRC bound to γ-TuNA contains NME7, FAM128A/B, and actin in addition to γ-tubulin and GCP2-6. RNA interference-mediated depletion of CDK5RAP2 impairs both centrosomal and acentrosomal microtubule nucleation, although γ-TuRC assembly is unaffected. Collectively, these results suggest that the γ-TuNA found in CDK5RAP2 has regulatory functions in γ-TuRC-mediated microtubule nucleation.  相似文献   

12.
The centrosome organizes microtubules, which are made up of alpha-tubulin and beta-tubulin, and contains centrosome-bound gamma-tubulin, which is involved in microtubule nucleation. Here we identify two new human tubulins and show that they are associated with the centrosome. One is a homologue of the Chlamydomonas delta-tubulin Uni3, and the other is a new tubulin, which we have named epsilon-tubulin. Localization of delta-tubulin and epsilon-tubulin to the centrosome is independent of microtubules, and the patterns of localization are distinct from each other and from that of gamma-tubulin. Delta-tubulin is found in association with the centrioles, whereas epsilon-tubulin localizes to the pericentriolar material. epsilon-Tubulin exhibits a cell-cycle-specific pattern of localization, first associating with only the older of the centrosomes in a newly duplicated pair and later associating with both centrosomes. epsilon-Tubulin thus distinguishes the old centrosome from the new at the level of the pericentriolar material, indicating that there may be a centrosomal maturation event that is marked by the recruitment of epsilon-tubulin.  相似文献   

13.
A mitosis-specific Aurora-A kinase has been implicated in microtubule organization and spindle assembly in diverse organisms. However, exactly how Aurora-A controls the microtubule nucleation onto centrosomes is unknown. Here, we show that Aurora-A specifically binds to the COOH-terminal domain of a Drosophila centrosomal protein, centrosomin (CNN), which has been shown to be important for assembly of mitotic spindles and spindle poles. Aurora-A and CNN are mutually dependent for localization at spindle poles, which is required for proper targeting of gamma-tubulin and other centrosomal components to the centrosome. The NH2-terminal half of CNN interacts with gamma-tubulin, and induces cytoplasmic foci that can initiate microtubule nucleation in vivo and in vitro in both Drosophila and mammalian cells. These results suggest that Aurora-A regulates centrosome assembly by controlling the CNN's ability to targeting and/or anchoring gamma-tubulin to the centrosome and organizing microtubule-nucleating sites via its interaction with the COOH-terminal sequence of CNN.  相似文献   

14.
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.  相似文献   

15.
CEP215 is a human orthologue of Drosophila centrosomin which is a core centrosome component for the pericentriolar matrix protein recruitment. Recent investigations revealed that CEP215 is required for centrosome cohesion, centrosomal attachment of the g-TuRC, and microtubule dynamics. However, it remains to be obscure how CEP215 functions for recruitment of the centrosomal proteins during the centrosome cycle. Here, we investigated a role of CEP215 during mitosis. Knockdown of CEP215 resulted in characteristic mitotic phenotypes, including monopolar spindle formation, a decrease in distance between the spindle pole pair, and detachment of the centrosomes from the spindle poles. We noticed that CEP215 is critical for centrosomal localization of dynein throughout the cell cycle. As a consequence, the selective centrosomal proteins were not recruited to the centrosome properly. Finally, the centrosomal localization of CEP215 also depends on the dynein-dynactin complex. Based on the results, we propose that CEP215 regulates a dynein-dependent transport of the pericentriolar matrix proteins during the centrosome maturation.  相似文献   

16.
Numerous proteins involved in endocytosis at the plasma membrane have been shown to be present at novel intracellular locations and to have previously unrecognized functions. ARH (autosomal recessive hypercholesterolemia) is an endocytic clathrin-associated adaptor protein that sorts members of the LDL receptor superfamily (LDLR, megalin, LRP). We report here that ARH also associates with centrosomes in several cell types. ARH interacts with centrosomal (gamma-tubulin and GPC2 and GPC3) and motor (dynein heavy and intermediate chains) proteins. ARH cofractionates with gamma-tubulin on isolated centrosomes, and gamma-tubulin and ARH interact on isolated membrane vesicles. During mitosis, ARH sequentially localizes to the nuclear membrane, kinetochores, spindle poles and the midbody. Arh(-/-) embryonic fibroblasts (MEFs) show smaller or absent centrosomes suggesting ARH plays a role in centrosome assembly. Rat-1 fibroblasts depleted of ARH by siRNA and Arh(-/-) MEFs exhibit a slower rate of growth and prolonged cytokinesis. Taken together the data suggest that the defects in centrosome assembly in ARH depleted cells may give rise to cell cycle and mitotic/cytokinesis defects. We propose that ARH participates in centrosomal and mitotic dynamics by interacting with centrosomal proteins. Whether the centrosomal and mitotic functions of ARH are related to its endocytic role remains to be established.  相似文献   

17.
18.
Microtubule nucleation from centrosomes involves a lockwasher-shaped protein complex containing gamma-tubulin, named the gamma-tubulin ring complex (gammaTuRC). Here we investigate the mechanism by which the gammaTuRC nucleates microtubules, using a direct labelling method to visualize the behaviour of individual gammaTuRCs. A fluorescently-labelled version of the gammaTuRC binds to the minus ends of microtubules nucleated in vitro. Both gammaTuRC-mediated nucleation and binding of the gammaTuRC to preformed microtubules block further minus-end growth and prevent microtubule depolymerization. The gammaTuRC therefore acts as a minus-end-capping protein, as confirmed by electron-microscopic examination of gold-labelled gammaTuRCs. These data support a nucleation model for gammaTuRC function that involves capping of microtubules.  相似文献   

19.
In mammalian cells the centrosome or diplosome is defined by the two parental centrioles observed in electron microscopy and by the pericentriolar material immunostained with several antibodies directed against various centrosomal proteins (gamma-tubulin, pericentrin, centrin and centractin). Partial destabilization of the microtubule cytoskeleton by microtubule-disassembling substances induced a splitting and a slow migration of the two diplosome units to opposite nuclear sides during most of the interphase in several mammalian cell lines. These units relocated close together following drug removal, while microtubule stabilization by nM taxol concentrations inhibited this process. Cytochalasin slowed down diplosome splitting but did not affect its relocation after colcemid washing. These results account for the apparently opposite effects induced by microtubule poisons on centriole separation. Moreover, they provide new information concerning the centrosome cycle and stability. First, the centrosome is formed by two units, distinguished only by the number of attached stable microtubules, but not by pericentrin, gamma-tubulin, centrin and centractin and their potency to nucleate microtubules. Second, the centrosomal units are independent during most of the interphase. Third, according to the cell type, these centrosomal units are localized in close proximity because they are either linked or maintained close together by the normal dynamics of the microtubule cytoskeleton. Finally, the relocalization of the centrosomal units with their centrioles in cells possessing one or two centrosomes suggests that their relative position results from the overall tensional forces involving at least partially the microtubule arrays nucleated by each of these entities.  相似文献   

20.
The amount of pericentriolar matrix at the centrosome is tightly linked to both microtubule nucleation and centriole duplication, although the exact mechanism by which pericentriolar matrix levels are regulated is unclear. Here we show that Centrobin, a centrosomal protein, is involved in regulating these levels. Interphase microtubule arrays in Centrobin-depleted cells are more focused around the centrosome and are less stable than the arrays in control cells. Centrobin-depleted cells initiate microtubule nucleation more rapidly than control cells and exhibit an increase in the number of growing microtubule ends emanating from the centrosome, while the parameters of microtubule plus end dynamics around the centrosome are not significantly altered. Finally, we show that Centrobin depletion results in the increased recruitment of pericentriolar matrix proteins to the centrosome, including γ-tubulin, AKAP450, Kendrin and PCM-1. We propose that Centrobin might regulate microtubule nucleation and organization by controlling the amount of pericentriolar matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号