首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study we examined human neutrophils for the expression of a receptor capable of binding C3dg and defined the relationship of this receptor to those that have been previously described, namely CR1, CR2, and CR3. C3dg was isolated from serum depleted of plasminogen, supplemented with 20 mM Mg++, and incubated at 37 degrees C for 6 to 8 days. The purified protein was homogeneous when analyzed by polyacrylamide gel electrophoresis and exhibited an apparent m.w. of 41,000. C3dg was polymerized by treatment with dimethyl suberimidate, and the dimer was isolated by gel filtration. Binding of both monomeric and dimeric 125I-labeled C3dg to neutrophils was saturable, and the latter ligand bound to an average of 12,400 sites/cell among nine normal individuals. At 4 degrees C, bound monomeric C3dg dissociated from neutrophils with an average t1/2 of 30 min, whereas dimeric C3dg dissociated with a t1/2 in excess of 120 min. Specific binding of multimeric C3dg was cation independent and was competitively inhibited by molar concentrations of iC3b and C3d that were equivalent to the inhibitory concentrations of unlabeled C3dg; C3b was less able to compete with C3dg for binding to these sites. The capacity of this neutrophil receptor to bind iC3b, C3dg, and C3d suggested its possible identity as CR2 or CR3. However, no specific binding to neutrophils of 125I-labeled HB-5 monoclonal anti-CR2 was detected. Furthermore, uptake of 125I-labeled C3dg was not inhibited by saturating concentrations of rabbit anti-CR1, anti-Mac-1, or OKM10. Thus, a receptor resides on neutrophils that binds the C3d region of iC3b and C3dg and is distinct from CR1, CR2, and CR3.  相似文献   

2.
C receptor CR3 (iC3b-receptor, CD11b/CD18) plays an essential role in several phagocytic and adhesive neutrophil functions. Recent evidence suggests that stimulus-induced phosphorylation of the CR3 beta-chain, CD18, may mediate certain neutrophil functions by transiently converting the molecule to an activated state. Staurosporine, a protein kinase C inhibitor that blocks PMA-induced CD18 phosphorylation, was used to study the functional relevance of this event. Neutrophils adhered to glass were assayed for binding and phagocytosis of iC3b-opsonized sheep E (EC3bi) in the presence or absence of PMA and/or staurosporine. Binding of EC3bi was markedly increased, not only by PMA, but also by staurosporine and by a combination of both agents (three- to sevenfold). The enhancement of rosetting by staurosporine was likely caused by increased surface expression of CR3 via exocytosis of specific granular contents. In contrast, staurosporine alone did not stimulate phagocytosis of EC3bi and markedly inhibited PMA-induced phagocytosis. Staurosporine also inhibited phagocytosis of yeast beta glucan particles, a CR3 ligand that, in contrast to EC3bi, is bound and ingested without additional prior treatment with PMA. beta glucan phagocytosis was associated with a low level of CD18 phosphorylation. Staurosporine did not block phagocytosis in general, because this agent had relatively little effect on FcR-mediated phagocytosis. These data demonstrate that phagocytosis mediated by CR3 requires activation of CR3 via a staurosporine-sensitive pathway. Increased binding of EC3bi, a function of increased surface expression of CR3, does not require activation of CR3 by such a pathway, confirming previous evidence for the independence of these two phenomena. A direct role for CD18 phosphorylation in the activation of CR3 for phagocytosis is consistent with these data.  相似文献   

3.
Complement-dependent cytotoxicity (CDC) is a key mechanism of Rituximab (RTX) action in killing non-Hodgkins lymphoma (NHL) cells both in vitro and probably in vivo. A DeImmunized, mouse/human chimeric monoclonal antibody (Mab), H17, specific for cell-associated complement C3 cleavage products, C3b and iC3b, was generated to enhance RTX-mediated killing of target cells by CDC. When NHL cell lines were treated with RTX and H17 in the presence of complement for 1 h, there was 40–70% more cell death than that observed with RTX alone. The enhancing effect of H17 was also seen over longer treatment periods. H17 was tested ex vivo against primary cells from NHL and chronic lymphocytic leukemia (CLL) patients. In RTX-resistant NHL samples, H17 enhanced RTX-mediated killing; in the remaining samples RTX + complement alone promoted more than 80% killing, and no significant enhancement was observed. The H17 antibody also increased RTX-mediated killing in four out of nine CLL samples. H17 may have therapeutic applications in NHL and CLL treatment as an adjunctive therapy to RTX. It might also enhance the activity of other therapeutic antibodies that work through CDC.  相似文献   

4.
The interaction of two Burkitt lymphoma lines, Raji and Rael, with human C and NK cells was analyzed. Raji cells activate the alternative C pathway (ACP) and then bind C3 fragments. Consequently, the cells become more sensitive to lysis by CR3-bearing NK cells but not to C lysis. In contrast, Rael cells are poor ACP activators, do not bind C3 fragments, and are therefore resistant to C-dependent NK lysis. As suggested earlier, the difference between Raji and Rael could be attributed to the presence or absence of CR2, respectively, on their surface. To potentiate C- and NK-dependent lysis of target cells, we generated heteroconjugates composed of a murine antitransferrin receptor mAb and of human C C3b or iC3b. Antibody-C3b conjugates induced C3 deposition on Rael cells and elevated C3 deposition on Raji cells in human serum. Both Raji and Rael cells coated with antibody-C3b conjugates were efficiently lyzed by the cytolytic ACP in human serum. This conjugate had a small enhancing effect on target cell lysis by NK cells which could be markedly increased by combined treatment of the target cell with antibody-C3b conjugate and C5-depleted human serum. On the other hand, antibody-iC3b conjugates efficiently potentiated lysis of target cells by NK cells in the absence of serum. The iC3b-directed cytotoxicity was mediated by CR3-bearing NK effector cells. Anti-C3 but not anti-mouse Ig antibodies abrogated the activity of the antibody-iC3b conjugate. These results further demonstrate that NK cytotoxicity may be potentiated by opsonizing the target cells with C3 fragments and suggest that antibody-C3b/iC3b conjugates could be potent tools for targeting and potentiation of the lytic action of both C and NK cells against tumor cells.  相似文献   

5.
The molecular mechanisms involved in the interaction of complement receptor 2 (CR2) with its natural ligands iC3b and C3d are still not well understood. In addition, studies regarding the binding site(s) of the receptor on C3 as well as the affinities of the C3 fragments for CR2 have produced contradictory results. In the present study, we have used surface plasmon resonance technology to study the interaction of CR2 with its ligands C3d, iC3b, and the EBV surface glycoprotein gp350/220. We measured the kinetics of binding of the receptor to its ligands, examined the influence of ionic contacts on these interactions, and assessed whether immobilized and soluble iC3b bound with similar kinetics to CR2. Our results indicate that 1) gp350 binding to CR2 follows a simple 1:1 interaction, whereas that of the C3 fragments is more complex and involves more than one intramolecular component; 2) kinetic differences exist between the binding of C3d and iC3b to CR2, which may be due to an additional binding site found on the C3c region of iC3b; and 3) iC3b binds to CR2 with different kinetics, depending on whether the iC3b is in solution or immobilized on the surface. These findings suggest that binding of CR2 to iC3b and C3d is more complex than previously thought.  相似文献   

6.
Complement fragment iC3b serves as a major opsonin for facilitating phagocytosis via its interaction with complement receptors CR3 and CR4, also known by their leukocyte integrin family names, αMβ2 and αXβ2, respectively. Although there is general agreement that iC3b binds to the αM and αX I-domains of the respective β2-integrins, much less is known regarding the regions of iC3b contributing to the αX I-domain binding. In this study, using recombinant αX I-domain, as well as recombinant fragments of iC3b as candidate binding partners, we have identified two distinct binding moieties of iC3b for the αX I-domain. They are the C3 convertase-generated N-terminal segment of the C3b α’-chain (α’NT) and the factor I cleavage-generated N-terminal segment in the CUBf region of α-chain. Additionally, we have found that the CUBf segment is a novel binding moiety of iC3b for the αM I-domain. The CUBf segment shows about a 2-fold higher binding activity than the α’NT for αX I-domain. We also have shown the involvement of crucial acidic residues on the iC3b side of the interface and basic residues on the I-domain side.  相似文献   

7.
Human serum-treated Raji and Daudi cells were shown to bind C3 fragments on their surface as a consequence of their capacity to activate C via the alternative pathway. C3 molecules were detectable on the cell surfaces up to 24 h after serum exposure. The C3 fragment-coated cells showed increased sensitivity to spontaneous lymphocyte-mediated cytotoxicity. The effector lymphocytes involved in the enhanced cytotoxicity were NK cells with low buoyant density, carrying both CR3 and FcR. Blocking of the FcR and CR3 with F(ab)2 fragments from Leu-11c or Leu-15 mAb, respectively, did not influence the lysis of targets that did not carry C3 fragments. In contrast, the accessibility of CR3 on the effector lymphocytes was essential for the C3 fragment-mediated enhancement of cytotoxicity. In addition to the Leu-15 antibody, N-acetyl-D-Glucosamine, a compound known to block iC3b binding to CR3, also abrogated the C3 fragment-imposed effect. Our previous experiments showed that the C3 fragments bind to acceptor sites on target cells. The present experiments show that the C3 fragments fixed onto the target bind to CR3 on effector cells. These data substantiate the hypothesis that the bivalent C3 fragments, which are fixed on the targets, promote their interaction with lytic lymphocytes by bridging the two cells.  相似文献   

8.
We have previously demonstrated that the alphaMbeta2 integrin (known as CR3 or Mac-1) expressed on neutrophils (PMNs) and/or on CHO Mac-1 transfected cells,in the presence of serum complement binds B. burgdorferi and promotes an increased non -opsonic adhesion, in the presence of serum complement. In this study we demonstrate that: 1) living motile B. burgdorferiand recombinant lipidated OspA and OspC, up-regulate CR3 expression on PMNs; 2) in the absence of serum, B. burgdorferi induces increased adhesion of CHO cells expressing CR3 to fibronectin, an extracellular matrix protein. Both the I-domain and the lectin-like domain of CR3 are involved in the binding recognition and activation because mAb anti I-domain and N-acetyl-glucosamine inhibit cell adhesion to fibronectin. These data indicate that B. burgdorferi whole cells, but not Osps, activate CR3 integrin; since this receptor plays a key role in priming neutrophils to important inflammatory events, the interaction of B. burgdorferi with neutrophils via the CR3 may enhance their role both in defence and in disease.  相似文献   

9.
A number of recent studies show that activation of CR3 on dendritic cells (DCs) suppresses TLR-induced TNF-alpha and IL-12 production and inhibits effective Ag presentation. Although the proposed physiologic role for these phenomena is immune suppression due to recognition of iC3b opsonized apoptotic cells by CR3, all of the aforementioned investigations used artificial means of activating CR3. We investigated whether iC3b opsonized apoptotic cells could induce the same changes reported with artificial ligands such as mAbs or iC3b-opsonized RBC. We explored the kinetics of iC3b opsonization in two models of murine cell apoptosis, gamma-irradiated thymocytes and cytokine deprivation of the IL-3 dependent cell line BaF3. Using a relatively homogenous population of early apoptotic cells (IL-3 deprived BaF3 cells), we show that iC3b opsonized apoptotic cells engage CR3, but this interaction is dispensable in mediating the anti-inflammatory effects of apoptotic cells. TLR-induced TNF-alpha and IL-12 production by bone marrow-derived DCs occurs heterogeneously, with apoptotic cells inhibiting only certain populations depending on the TLR agonist. In contrast, although apoptotic cells induced homogeneous IL-10 production by DCs, IL-10 was not necessary for the inhibition of TNF-alpha and IL-12. Furthermore, because the ability of iC3b opsonization to enhance phagocytosis of apoptotic cells has been controversial, we report that iC3b opsonization does not significantly affect apoptotic cell ingestion by DCs. We conclude that the apoptotic cell receptor system on DCs is sufficiently redundant such that the absence of CR3 engagement does not significantly affect the normal anti-inflammatory processing of apoptotic cells.  相似文献   

10.
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

11.
Raji and Daudi cells were opsonized with C3b, iC3b, and C3d fragments by using purified complement components. The sensitivity of C3-opsonized cells to lysis mediated by low density blood lymphocytes was studied. Raji and Daudi cells carrying C3b or C3d fragments were lysed with similar efficiencies as the nonopsonized cells. The presence of iC3b on the target surface imposed elevated NK sensitivity. The iC3b-mediated enhancement of NK lysis was inhibited when iC3b fragments or rabbit anti-human C3 antibodies were included into the lytic assays. These results indicate that the iC3b fragments fixed on the targets bind to the CR3 on the lymphocytes. Results obtained in immobilized conjugate-lytic assays showed that iC3b-opsonized targets interact more readily with the lymphocytes. This was reflected by the elevated proportion of lymphocytes that were bound to the iC3b-carrying targets. The proportions of conjugates in which target damage occurred were similar with the control and with the iC3b-carrying cells. It seems therefore that opsonization of targets with iC3b leads to recruitment of effector lymphocytes due to contact with their CR3. However, once the effector-target contact is established, the triggering of lytic function does not seem to be influenced by the iC3b/CR3 bridge.  相似文献   

12.
External surfaces of cells are normally protected by extracellular superoxide dismutase, SOD3, which binds to polyanions such as heparan sulfate. We constructed a fusion gene encoding a chimeric SOD consisting of the mature human mitochondrial SOD2 plus the COOH-terminal 26-amino acid heparin-binding "tail" from SOD3. This tail is responsible for the enzyme's affinity for endothelial surfaces. The fusion gene was expressed in Escherichia coli, and the fully active enzyme SOD2/3 was purified. Although native SOD2 has no affinity for heparin, SOD2/3 binds to a heparin-agarose column. In a rat model of acute lung injury induced by intratracheal instillation of IL-1, SOD2/3, SOD2, and denatured SOD2/3 showed 92%, 13.8%, and 0% reduction of lung leak, respectively. Only SOD2/3 prevented neutrophil accumulation. In the carrageenan-induced foot edema model in the rat, SOD2/3 reduced edema by 62% (P < 0.003) at a dose in which native SOD2 produced no significant effect. Thus SOD2/3 appears to have properties as a therapeutic anti-inflammatory agent that are greatly superior to other available forms of the enzyme.  相似文献   

13.
Enterococcus faecalis (Ef) accounts for most cases of enterococcal bacteremia, which is one of the principal causes of nosocomial bloodstream infections (BSI). Among several virulence factors associated with the pathogenesis of Ef, an extracellular gelatinase (GelE) has been known to be the most common factor, although its virulence mechanisms, especially in association with human BSI, have yet to be demonstrated. In this study, we describe the complement resistance mechanism of Ef mediated by GelE. Using purified GelE, we determined that it cleaved the C3 occurring in human serum into a C3b-like molecule, which was inactivated rapidly via reaction with water. This C3 convertase-like activity of GelE was shown to result in a consumption of C3 and thus inhibited the activation of the complement system. Also, GelE was confirmed to degrade an iC3b that was deposited on the Ag surfaces without affecting the bound C3b. This proteolytic effect of GelE against the major complement opsonin resulted in a substantial reduction in Ef phagocytosis by human polymorphonuclear leukocytes. In addition, we verified that the action of GelE against C3, which is a central component of the complement cascade, was human specific. Taken together, it was suggested that GelE may represent a promising molecule for targeting human BSI associated with Ef.  相似文献   

14.
15.
The leukocyte integrin complement receptor type III (CR3, CD11b/CD18) binds the C3 cleavage product iC3b. Many other integrins bind their ligands via an Arg-Gly-Asp (RGD) triplet. Both the RGD-containing C3 peptide 1390TRYRGDQDATMS1401 (pro-C3 numbering) and the RGD-like fibrinogen peptide GGAKQAGDV, which binds to the platelet integrin glycoprotein IIb-IIIa, were shown to inhibit the iC3b-CR3 interaction, suggesting that this binding is also RGD-mediated (Wright, S.D., Weitz, J.I., Huang, A. J., Levin, S.M., Silverstein, S.C., and Loike, J.D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 7734-7738). However, unlike other integrin-ligand interactions, that of CR3 and iC3b is unaffected by the hexapeptide GRGDSP, and substitutions in the RGD triplet of C3 from other species appear to be tolerated. It was, therefore, proposed (Grossberger, D., Marcuz, A., du Pasquier, L., and Lambris, J.D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 1323-1327) that the highly conserved DATMS portion of the inhibitory C3 peptide may have been responsible for its binding. To address these inconsistencies and directly assess the role of the 1390-1401 segment within the complete iC3b molecule in mediating binding to CR3, a human C3 cDNA was altered by site-directed mutagenesis and the expressed recombinant proteins were examined in a CR3-specific assay. Replacement of RGD by AAA did not abolish rosetting of the corresponding iC3b-coated erythrocytes to human CR3-bearing leukocytes. In addition, mutant iC3b molecules in which the positively charged R1391 (corresponding to K in the fibrinogen peptide) and the highly conserved 1397DATMS sequence were replaced by Q and NAAMA respectively, were still bound by CR3. We conclude that the iC3b-CR3 interaction is not mediated by the RGD triplet or its neighboring residues.  相似文献   

16.
The oviduct-derived embryotrophic factor, ETF-3, enhances the development of trophectoderm and the hatching process of treated embryos. Monoclonal anti-ETF-3 antibody that abolishes the embryotrophic activity of ETF-3 recognized a 115-kDa protein from the conditioned medium of immortalized human oviductal cells. Mass spectrometry analysis showed that the protein was complement C3. Western blot analysis using an antibody against C3 confirmed the cross-reactivities between anti-C3 antibody with ETF-3 and anti-ETF-3 antibody with C3 and its derivatives, C3b and iC3b. Both derivatives, but not C3, were embryotrophic. iC3b was most efficient in enhancing the development of blastocysts with larger size and higher hatching rate, consistent with the previous reported embryotrophic activity of ETF-3. Embryos treated with iC3b contained iC3b immunoreactivity. The oviductal epithelium produced C3 as evidenced by the presence of C3 immunoreactivity and mRNA in the human oviduct and cultured oviductal cells. Cyclical changes in the expression of C3 immunoreactivity and mRNA were also found in the mouse oviduct with the highest expression at the estrus stage. Molecules involving in the conversion of C3b to iC3b and binding of iC3b were present in the human oviduct (factor I) and mouse preimplantation embryo (Crry and CR3), respectively. In conclusion, the present data showed that the oviduct produced C3/C3b, which was converted to iC3b to stimulate embryo development.  相似文献   

17.
Several previous reports concluded that the C4b fragment of human C4A (C4Ab) binds with higher affinity to CR1 than does C4Bb. Because the isotypic residues, (1101)PCPVLD and (1101)LSPVIH in C4A and C4B, respectively, are located within the C4d region, one may have expected a direct binding contribution of C4d to the interaction with CR1. However, using surface plasmon resonance as our analytical tool, with soluble rCR1 immobilized on the biosensor chip, we failed to detect significant binding of C4d of either isotype. By contrast, binding of C4c was readily detectable. C4A and C4B, purified from plasma lacking one of the isotypes, were Cs converted to C4Ab and C4Bb. Spontaneously formed disulfide-linked dimers were separated from monomers and higher oligomers by sequential chromatographic steps. The binding sensorgrams of C4Ab and C4Bb monomers as analytes reached steady state plateaus, and these equilibrium data yielded essentially superimposable saturation curves that were well fit by a one-site binding model. Although a two-site model was required to fit the equilibrium-binding data for the dimeric forms of C4b, once again there was little difference in the K(D) values obtained for each isotype. Independent verification of our surface plasmon resonance studies came from ELISA-based inhibition experiments in which monomers of C4Ab and C4Bb were equipotent in inhibiting the binding of soluble CR1 to plate-bound C4b. Although divergent from previous reports, our results are consistent with recent C4Ad structural data that raised serious doubts about there being a conformational basis for the previously reported isotypic differences in the C4b-CR1 interaction.  相似文献   

18.
Peña C  Blank VC  Marino VJ  Roguin LP 《Peptides》2005,26(7):1144-1149
We have previously reported the antiproliferative activity of synthetic sequences 29-35 and 122-139 of the interferon-alpha2b (IFN-alpha2b), both probably representing a common receptor recognition domain. In the search of new peptidic agonists, we designed and synthesized the linear peptide (Gly)2-122-137-Gly138-Gly29-30-35-(Gly)2, in which Gly residues replaced the 138 and 29 Cys bound through a disulfide bridge in the native cytokine. Additionally, a cyclic analog was obtained by reaction of the N- and C-terminal ends of the linear fragment. Thus, the distance that separates residues 122 and 35 in the crystalline structure of the IFN-alpha2b was maintained through a (Gly)4 bridge. When the influence of chimeric peptides on the proliferation of WISH cells was studied, it was shown that both derivatives significantly diminished cell growth. A more evident inhibitory effect on (125)I-IFN-alpha2b binding to WISH cell-membrane receptors was observed for both peptides. Results indicated that chimeric IFN-alpha2b peptides behaved as partial agonists of the IFN-alpha2b molecule and may be of interest for drug design purposes.  相似文献   

19.
We have investigated fluid phase cleavage of C3b by peritoneal polymorphonuclear leukocytes of guinea pigs and found that polymorphonuclear leukocytes expressed an iC3b forming enzyme as well as C3b receptor with maturation in peritoneal cavity. The iC3b forming enzyme was found to be distinct from C3bINA, a physiological iC3b forming enzyme in plasma, since the activity was inhibited by monoiodoacetic acid and did not require a cofactor plasma protein, beta 1H, for the cleavage of C3b into iC3b. The iC3b forming enzyme is gradually released upon incubation of PMN at 37 degrees C. The molecular weight of the iC3b forming enzyme was estimated to be 48,000 from gel filtration on Sephadex G-200.  相似文献   

20.
Epstein-Barr virus (EBV), an oncogenic herpesvirus of humans, displays selective tropism for B lymphocytes and epithelial cells. EBV tropism is thought to be determined in part by a unique host cell receptor termed CR2 (CD21). Although previous studies have demonstrated that CR2 mediates EBV binding to B cells, its role in initiating EBV infection and B-cell transformation is less certain. In the studies reported here, soluble recombinant CR2 was shown to cause substantial inhibition of EBV infection of B cells in vitro, indicating that CR2 binding initiates EBV infection. Soluble CR2 may represent a therapeutic agent for acute and chronic EBV infections in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号