首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell killing by avian leukosis virus subgroup B (ALV-B) in cultures has been extensively studied, but the molecular basis of this process has not been established. Here we show that superinfection, which has been linked to cell killing by ALV-B, plays no crucial role in cell death induction. Instead, we show that signaling by the ALV-B receptor, TVB(S3), a member of the tumor necrosis factor receptor family, is essential for ALV-B-mediated cell death. TVB(S3) activated caspase-dependent apoptosis during ALV-B infection. Strikingly, apoptosis induction occurred predominantly in uninfected cells, while ALV-B-infected cells were protected against cell death. This bystander killing phenomenon was reproduced in a virus-free system by cocultivating ALV-B Env-expressing cells with TVB(S3)-expressing cells. Taken together, our results indicated that ALV-B-mediated apoptosis is triggered by ALV-B Env-TVB(S3) interactions.  相似文献   

2.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

3.
At the end of an immune response, apoptosis drastically reduces the numbers of activated T cells. It has been a matter of intense research how this form of apoptosis is regulated and initiated, and a number of proteins have been identified that contribute to this process. The present, widely accepted model assumes that the interplay of pro- and anti-apoptotic Bcl-2 family members determines the onset of activated T cell death, with the BH3-only protein Bim activating pro-apoptotic Bax/Bak. In the search for up-stream signals, factors from other immune cells have been shown to play a role, and the NF-κB family member Bcl-3 has been implicated as a signalling-intermediate in T cells. Recent work has tested the interrelation of these factors and has suggested that Bcl-3 acts as a regulator of Bim activation, that the induction of apoptosis through Bim can be complemented by its relative Puma, and that the presence of certain cytokines during T cell activation delays the activation of Bim and Puma. Here we discuss these recent insights and provide a view on how the regulation of activated T cell death is achieved and how extrinsic signals may translate into the activation of the apoptotic pathway.  相似文献   

4.
Ezrin belongs to the ERM (ezrin-radixin-moesin) protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells.  相似文献   

5.
The adaptor protein FADD directly, or indirectly via another adaptor called TRADD, recruits caspase 8 to death receptors of the tumor necrosis factor receptor family. Consequentially, a dominant-negative mutant (FADD-DN, which consists only of the FADD death domain) that binds to receptors but cannot recruit caspase 8 has been widely used to inhibit apoptosis by various stimuli that work via death receptors. Here, we show that FADD-DN also has another cell type- and cancer-dependent activity because it induces apoptosis of normal human prostate epithelial cells but not normal prostate stromal cells or prostate cancer cells. This activity is independent of FADD-DN's ability to bind to three known interacting proteins, Fas, TRADD or RIP suggesting that it is distinct from FADD's functions at activated death receptors. FADD-DN induces caspase activation in normal epithelial cells as demonstrated using a Fluorescence Resonance Energy Transfer assay that measures caspase activity in individual living cells. However, caspase-independent pathways are also implicated in FADD-DN-induced apoptosis because caspase inhibitors were inefficient at preventing prostate cell death. Therefore, the death domain of FADD has a previously unrecognized role in cell survival that is epithelial-specific and defective in cancer cells. This FADD-dependent signaling pathway may be important in prostate carcinogenesis.  相似文献   

6.
A central role for Bid in granzyme B-induced apoptosis   总被引:7,自引:0,他引:7  
Granzyme B, a protease released from cytotoxic lymphocytes, has been proposed to induce target cell death by cleaving and activating the pro-apoptotic Bcl-2 family member Bid. It has also been proposed that granzyme B can induce target cell death by activating caspases directly, by cleaving caspase substrates, and/or by cleaving several non-caspase substrates. The relative importance of Bid in granzyme B-induced cell death has therefore remained unclear. Here we report that cells isolated from various tissues of Bid-deficient mice were resistant to granzyme B-induced cell death. Consistent with the proposed role of Bid in regulating mitochondrial outer membrane permeabilization, cytochrome c remained in the mitochondria of Bid-deficient cells treated with granzyme B. Unlike wild type cells, Bid-deficient cells survived and were then able to proliferate normally, demonstrating the critical role for Bid in mediating granzyme B-induced apoptosis.  相似文献   

7.
Bcl-2 family proteins are key regulators of apoptosis. Both pro-apoptotic and anti-apoptotic members of this family are found in mammalian cells, but only the pro-apoptotic protein Debcl has been characterized in Drosophila: Here we report that Buffy, the second Drosophila Bcl-2-like protein, is a pro-survival protein. Ablation of Buffy by RNA interference leads to ectopic apoptosis, whereas overexpression of buffy results in the inhibition of developmental programmed cell death and gamma irradiation-induced apoptosis. Buffy interacts genetically and physically with Debcl to suppress Debcl-induced cell death. Genetic interactions suggest that Buffy acts downstream of Rpr, Grim and Hid, and upstream of the apical caspase Dronc. Furthermore, overexpression of buffy inhibits ectopic cell death in diap1 (th(5)) mutants. Taken together these data suggest that Buffy can act downstream of Rpr, Grim and Hid to block caspase-dependent cell death. Overexpression of Buffy in the embryo results in inhibition of the cell cycle, consistent with a G(1)/early-S phase arrest. Our data suggest that Buffy is functionally similar to the mammalian pro-survival Bcl-2 family of proteins.  相似文献   

8.
Lipoxygenase metabolites have been postulated to be involved in the degenerative events provoked by oxidative stress in neuronal and nonneuronal targets, but their roles remain controversial. In the present work, we investigated the putative role of 12 lipoxygenase metabolites in the programmed cell death induced by glutathione depletion in PC 12 cells. Determinations of 12 lipoxygenase expression and activity reveal the presence of the enzyme in PC 12 cells, but the formation of arachidonate metabolites appears rather low and is not influenced by glutathione depletion. In addition, although the death induced by buthionine sulfoximine (BSO) treatment is abolished by known inhibitors of lipoxygenase enzymes, dexamethasone, a potent steroidal inhibitor of both cyclooxygenase and lipoxygenase pathways, fails to protect the cells from BSO-induced degeneration. Finally, incubation of the cells for 24 h in the presence of exogenous 12 HETE did not induce any significant decrease in cell viability. Our results indicate that 12 lipoxygenase is unlikely to play a major role in the process of cell degeneration provoked by glutathione depletion.  相似文献   

9.
Roscovitine (Rosc) and purvalanol (Pur) are competitive inhibitors of cyclin-dependent kinases (CDKs) by targeting their ATP-binding pockets. Both drugs are shown to be effective to decrease cell viability and dysregulate the ratio of pro- and anti-apoptotic Bcl-2 family members, which finally led to apoptotic cell death in different cancer cell lines in vitro. It was well established that Bcl-2 family members have distinct roles in the regulation of other cellular processes such as endoplasmic reticulum (ER) stress. The induction of ER stress has been shown to play critical role in cell death/survival decision via autophagy or apoptosis. In this study, our aim was to investigate the molecular targets of CDK inhibitors on ER stress mechanism related to distinct cell death types in time-dependent manner in HeLa cervical cancer cells. Our results showed that Rosc and Pur decreased the cell viability, cell growth and colony formation, induced ER stress-mediated autophagy or apoptosis in time-dependent manner. Thus, we conclude that exposure of cells to CDK inhibitors induces unfolded protein response and ER stress leading to autophagy and apoptosis processes in HeLa cervical cancer cells.  相似文献   

10.
Caspase-independent programmed cell death with necrotic morphology.   总被引:14,自引:0,他引:14  
Cell death is generally classified into two large categories: apoptosis represents active, programmed cell death, while necrosis represents passive cell death without underlying regulatory mechanisms. Recent progress revealed that caspases, a family of cysteine proteases, play a central role in the regulation of apoptosis. Unexpectedly, however, caspase inhibition occasionally turns the morphology of programmed cell death from apoptotic into necrotic without inhibiting death itself. In this article, we review different models of caspase-independent programmed cell death showing necrotic-like morphology, including our Ras-mediated caspase-independent cell death. Based on these findings, we suggest the existence of a necrotic-like cell death regulated by cellular intrinsic death programs distinct from that of apoptosis. Even though type 2 physiological cell death, or autophagic degeneration, has been recognized as a necrotic-like programmed cell death for a long time, the underlying molecular mechanisms have not been identified despite its physiological significance. This has been in part due to the previous absence of adequate caspase-independent cellular models to study, recent efforts may now help to elucidate these mechanisms.  相似文献   

11.
The signalling pathways utilized by tumor necrosis factor-a (TNF) to elicit its actions have been examined in TA1 adipogenic cells. A role for lipoxygenase metabolites of arachidonic acid as mediators of TNF action in the induction of c-fos has been described. In this paper we report that acute cytotoxicity elicited by TNF, in the presence of cycloheximide (CHX), also utilizes this pathway since inhibitors of lipoxygenase action fully prevent TNF/CHX killing of several cell lines. Our data reveal that TNF induction of manganous superoxide dismutase (MnSOD) is also dependent upon lipoxygenase activity. Radical scavengers such as NAC and PDTC prevent TNF/CHX-induced cell killing and reduce MnSOD induction by TNF. Therefore, cell death by TNF/CHX treatment occurs via a pathway in which lipoxygenase products directly or indirectly operate via the generation of superoxide anions.  相似文献   

12.
Hsp105alpha, which belongs to the HSP105/110 family, is expressed at especially high levels in the brain in mammals and has been shown to prevent stress-induced apoptosis in neuronal cells. This protein is also expressed transiently at high levels during mouse embryogenesis, and is characteristically found in apoptotic cells and bodies in embryos. In the present study, to elucidate a role of Hsp105alpha in embryonal cells, we established Hsp105alpha-overexpressing F9 cells, and examined the effect of Hsp105alpha on cell death induced by etoposide, heat shock or cycloheximide. Apoptotic cell death was induced in cells treated with etoposide or heat shock, and necrotic cell death was induced in cells by cycloheximide. The apoptosis was enhanced by overexpression of HSP105alpha, whereas the necrosis was not affected by overexpression of HSP105alpha. Furthermore, Hsp105alpha seemed to modulate the stress-induced apoptosis at different steps of the apoptotic process depending on the stress stimuli. The present findings together with the previous observation on neuronal cells suggested that Hsp105 has opposite effects on stress-induced apoptosis depending on the cell type; a pro-apoptotic effect in embryonal cells and an anti-apoptotic effect in neuronal cells. The apoptosis-enhancing activity of Hsp105alpha may play an important role during embryogenesis.  相似文献   

13.
14.
Overcoming resistance of cancer cells to apoptosis   总被引:6,自引:0,他引:6  
Discovery of the B cell lymphoma gene 2 (Bcl-2 gene) led to the concept that development of cancers required the simultaneous acquisition, not only of deregulated cell division, but also of resistance to programmed cell death or apoptosis. Apoptosis is arguably the common pathway to cell death resulting from a range of therapeutic initiatives, so that understanding the basis for the resistance of cancer cells to apoptosis may hold the key to development of new treatment initiatives. Much has already been learnt about the apoptotic pathways in cancer cells and proteins regulating these pathways. In most cells, apoptosis is dependent on the mitochondrial dependent pathway. This pathway is regulated by pro- and anti-apoptotic members of the Bcl-2 family, and manipulation of these proteins offers scope for a number of treatment initiatives. Effector caspases activated by the mitochondrial pathway or from death receptor signaling are under the control of the inhibitor of apoptosis protein (IAP) family. Certain proteins from mitochondrial can, however, competitively inhibit their binding to effector caspases. Information about the structure of these proteins has led to initiatives to develop therapeutic agents to block the IAP family. In addition to development of selective agents based on these two (Bcl-2 and IAP) protein families, much has been learnt about signal pathways that may regulate their activity. These in turn might provide additional approaches based on selective regulators of the signal pathways.  相似文献   

15.
TRAIL ligand induces selectively apoptosis in tumor cells by binding to two death receptors (DR4 and DR5) and holds promise as a potential therapeutic agent against cancer. While it has been known for long time that TRAIL receptors are commonly expressed in wide variety of normal tissues, it is not well understood why TRAIL kills tumor cells but leaves normal cells unharmed. The prototypic oncogene c-Myc promotes the cell cycle and simultaneously primes activation of the Bcl-2 family controlled mitochondria apoptosis pathway. A striking reflection of the c-Myc-dependent apoptotic sensitization is the dramatic c-Myc-induced vulnerability of cells to TRAIL and other death receptor ligands. Here we summarize the recent findings regarding the death mechanisms of TRAIL/TRAIL receptor system and the connection of c-Myc to the mitochondrial apoptosis pathway, focusing on our work that couples c-Myc via Bak to the TRAIL death receptor pathway. Finally, we present a mitochondria-priming model to explain how c-Myc-Bak interaction amplifies the TRAIL-induced caspase 8-Bid pathway to induce fullblown apoptosis. We discuss the implications of these findings for understanding the selective cytotoxicity of TRAIL and for the therapeutic exploitation of the death receptor pathway.  相似文献   

16.
Caspase-independent death mechanisms have been shown to execute apoptosis in many types of neuronal injury. P53 has been identified as a key regulator of neuronal cell death after acute injury such as DNA damage, ischemia, and excitotoxicity. Here, we demonstrate that p53 can induce neuronal cell death via a caspase-mediated process activated by apoptotic activating factor-1 (Apaf1) and via a delayed onset caspase-independent mechanism. In contrast to wild-type cells, Apaf1-deficient neurons exhibit delayed DNA fragmentation and only peripheral chromatin condensation. More importantly, we demonstrate that apoptosis-inducing factor (AIF) is an important factor involved in the regulation of this caspase-independent neuronal cell death. Immunofluorescence studies demonstrate that AIF is released from the mitochondria by a mechanism distinct from that of cytochrome-c in neurons undergoing p53-mediated cell death. The Bcl-2 family regulates this release of AIF and subsequent caspase-independent cell death. In addition, we show that enforced expression of AIF can induce neuronal cell death in a Bax- and caspase-independent manner. Microinjection of neutralizing antibodies against AIF significantly decreased injury-induced neuronal cell death in Apaf1-deficient neurons, indicating its importance in caspase-independent apoptosis. Taken together, our results suggest that AIF may be an important therapeutic target for the treatment of neuronal injury.  相似文献   

17.
Signaling through the B cell antigen receptor (BCR) is a key determinant in the regulation of B cell physiology. Depending on additional factors, such as microenvironment and developmental stage, ligation of the BCR can trigger B lymphocyte activation, proliferation, or apoptosis. The regulatory mechanisms determining B cell apoptosis and survival are not completely known. Using the murine B lymphoma cell line WEHI-231 as a model system, we investigated the role of Bad phosphorylation, a pro-apoptotic member of the Bcl-2 family, in anti-IgM mediated apoptosis. For apoptotic analysis we focused in particular on the mitochondrial potential (deltapsi(m)) collapse which has been reported as a rate-limiting step in the BCR-induced cell death of immature B lymphocytes. Bad phosphorylation at serine 112, 136 and 155 was found in WEHI-231 cell control cultures and its hypophosphorylation on the three sites correlated with the appearance of apoptosis when cross-linking surface IgM. Furthermore, treatment of cells with specific PK inhibitors known to be involved in serine phosphorylation of Bad (LY294002 for PI3K and H-89 for PKA) mimiced or enhanced BCR-induced cell death. These results strongly suggest that regulation of Bad phosphorylation plays an active role in mediating anti-IgM-induced apoptosis of immature B cells.  相似文献   

18.
Glucose uptake and utilization are growth factor-stimulated processes that are frequently upregulated in cancer cells and that correlate with enhanced cell survival. The mechanism of metabolic protection from apoptosis, however, has been unclear. Here we identify a novel signaling pathway initiated by glucose catabolism that inhibited apoptotic death of growth factor-deprived cells. We show that increased glucose metabolism protected cells against the proapoptotic Bcl-2 family protein Bim and attenuated degradation of the antiapoptotic Bcl-2 family protein Mcl-1. Maintenance of Mcl-1 was critical for this protection, as glucose metabolism failed to protect Mcl-1-deficient cells from apoptosis. Increased glucose metabolism stabilized Mcl-1 in both cell lines and primary lymphocytes via inhibitory phosphorylation of glycogen synthase kinase 3alpha and 3beta (GSK-3alpha/beta), which otherwise promoted Mcl-1 degradation. While a number of kinases can phosphorylate and inhibit GSK-3alpha/beta, we provide evidence that protein kinase C may be stimulated by glucose-induced alterations in diacylglycerol levels or distribution to phosphorylate GSK-3alpha/beta, maintain Mcl-1 levels, and inhibit cell death. These data provide a novel nutrient-sensitive mechanism linking glucose metabolism and Bcl-2 family proteins via GSK-3 that may promote survival of cells with high rates of glucose utilization, such as growth factor-stimulated or cancerous cells.  相似文献   

19.
Bcl-2 protein family members function either to promote or inhibit programmed cell death. Bcl-2, typically an inhibitor of apoptosis, has also been demonstrated to have pro-apoptotic activity (Cheng, E. H., Kirsch, D. G., Clem, R. J., et al. (1997) Science 278, 1966-1968). The pro-apoptotic activity has been attributed to the cleavage of Bcl-2 by caspase-3, which converts Bcl-2 to a pro-apoptotic molecule. Bcl-2 is a membrane protein that is localized in the endoplasmic reticulum (ER) membrane, the outer mitochondrial membrane, and the nuclear envelope. Here, we demonstrate that transient expression of Bcl-2 at levels comparable to those found in stably transfected cells induces apoptosis in human embryonic kidney 293 cells and in the human breast cell line MDA-MB-468 cells. Furthermore, we have targeted Bcl-2 specifically to either the ER or the outer mitochondrial membrane to test whether induction of apoptosis by Bcl-2 is dependent upon its localization within either of these membranes. Our findings indicate that Bcl-2 specifically targeted to the mitochondria induces cell death, whereas Bcl-2 that is targeted to the ER does not. The expression of Bcl-2 does result in its cleavage to a 20-kDa protein; however, mutation of the caspase-3 cleavage site (D34A) does not inhibit its ability to induce cell death. Additionally, we find that transiently expressed ER-targeted Bcl-2 inhibits cell death induced by Bax overexpression. In conclusion, the ability of Bcl-2 to promote apoptosis is associated with its localization at the mitochondria. Furthermore, the ability of ER-targeted Bcl-2 to protect against Bax-induced apoptosis suggests that the ER localization of Bcl-2 may play an important role in its protective function.  相似文献   

20.
Programmed cell death can be divided into several categories including type I (apoptosis) and type II (autophagic death). The Bcl-2 family of proteins are well-characterized regulators of apoptosis, and the multidomain pro-apoptotic members of this family, such as Bax and Bak, act as a mitochondrial gateway where a variety of apoptotic signals converge. Although embryonic fibroblasts from Bax/Bak double knockout mice are resistant to apoptosis, we found that these cells still underwent a non-apoptotic death after death stimulation. Electron microscopic and biochemical studies revealed that double knockout cell death was associated with autophagosomes/autolysosomes. This non-apoptotic death of double knockout cells was suppressed by inhibitors of autophagy, including 3-methyl adenine, was dependent on autophagic proteins APG5 and Beclin 1 (capable of binding to Bcl-2/Bcl-x(L)), and was also modulated by Bcl-x(L). These results indicate that the Bcl-2 family of proteins not only regulates apoptosis, but also controls non-apoptotic programmed cell death that depends on the autophagy genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号