首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
董欣怡  祝明建  栾博  管少平  林丰泽 《生态学报》2024,44(12):5116-5127
全球气候变暖所导致的海平面上升和快速城镇化将对沿海生境的分布和景观格局造成重大影响。评估海平面上升影响下的滨海湿地的脆弱性是对区域生态环境进行修复治理的重要依据。以粤港澳大湾区为例,基于SLAMM模型和Fragstas模型,针对六种海平面上升和土地利用耦合情景,对红树林、盐沼和潮滩三类海岸生境在2100年的面积变化、分布状况和脆弱程度进行了预测和分析。结果表明:1) 随着海平面上升,红树林和潮滩生境遭受严重退化。其中,红树林高脆弱性区主要分布在西江口、珠江口和黄茅海东岸。潮滩高脆弱性区则平均分布在大湾区沿海地带。相比之下,盐沼生境受海平面上升的影响较小。2) 与红树林和潮滩相比,土地利用模式对盐沼生境的影响最为显著。在保护已开发用地的情景下,珠江口西侧的盐沼面积大幅增加,脆弱性程度低。在保护所有旱地的情景下,盐沼生境面积虽然基本维持,但景观格局破坏严重,脆弱性程度高。本研究建议针对高脆弱区,动态调整土地利用策略,清理沿海湿地向内迁移的空间,增强沿海生境应对海平面上升的适应性。本研究可为沿海湿地的管理和保护提供科学支持。  相似文献   

2.
Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.  相似文献   

3.
Sea level rise elicits short‐ and long‐term changes in coastal plant communities by altering the physical conditions that affect ecosystem processes and species distributions. While the effects of sea level rise on salt marshes and mangroves are well studied, we focus on its effects on coastal islands of freshwater forest in Florida's Big Bend region, extending a dataset initiated in 1992. In 2014–2015, we evaluated tree survival, regeneration, and understory composition in 13 previously established plots located along a tidal creek; 10 plots are on forest islands surrounded by salt marsh, and three are in continuous forest. Earlier studies found that salt stress from increased tidal flooding prevented tree regeneration in frequently flooded forest islands. Between 1992 and 2014, tidal flooding of forest islands increased by 22%–117%, corresponding with declines in tree species richness, regeneration, and survival of the dominant tree species, Sabal palmetto (cabbage palm) and Juniperus virginiana (southern red cedar). Rates of S. palmetto and J. virginiana mortality increased nonlinearly over time on the six most frequently flooded islands, while salt marsh herbs and shrubs replaced forest understory vegetation along a tidal flooding gradient. Frequencies of tidal flooding, rates of tree mortality, and understory composition in continuous forest stands remained relatively stable, but tree regeneration substantially declined. Long‐term trends identified in this study demonstrate the effect of sea level rise on spatial and temporal community reassembly trajectories that are dynamically re‐shaping the unique coastal landscape of the Big Bend.  相似文献   

4.
The decline of saltmarsh in Currambene Creek andCararma Inlet, in Jervis Bay, eastern Australia, inthe period 1944–1999 has been documented through photogrammetric analysis. The area of saltmarsh hasdeclined in Currambene Creek by approximately 52.5%and in Cararma Inlet by approximately 35%. InCurrambene Creek the decline of saltmarsh is primarilydue to the landward encroachment of mangroves, whilein Cararma Creek the seaward encroachment of Melaleuca and Casuarina have more significantlycontributed to losses of saltmarsh. Regional sea-levelrise is excluded as a primary cause of thistransgression. A more plausible hypothesis involvesan increase in the delivery of freshwater andnutrients to the intertidal environments in responseto higher rainfall and catchment modifications.  相似文献   

5.
Ong Jin-Eong 《Hydrobiologia》1995,295(1-3):343-351
Despite the recent better understanding and awareness of the role of mangroves, these coastal forest communities continue to be destroyed or degraded (or euphemistically reclaimed) at an alarming rate. The figure of 1% per year given by Ong (1982) for Malaysia can be taken as a conservative estimate of destruction of mangroves in the Asia-Pacific region. Whilst the Japanese-based mangrove wood-chips industry continues in its destructive path through the larger mangrove ecosystems of the region, the focus of mangrove destruction has shifted to the conversion of mangrove areas into aquaculture ponds and the consequences of the unprecedented massive addition of carbon dioxide to the atmosphere by post industrial man.Mangroves are non-homogeneous; characterised by distinct vegetative zones that occupy the interface between land and sea and dynamically interacting with the atmosphere above as well as with the influences of the adjacent land and sea. The conservation of mangroves should thus include not only the various vegetation and tidal inundation zones but also the adjacent marine and terrestrial areas (including the water catchment area).On the current concern with global climate change, it is pointed out that relative sea level change is very much site dependent. For effective planning and management, it is vital to know if a particular site is stable, rising or sinking so efforts should be directed to find suitable methods for determining this. However, should rapid relative sea level rise take place, there is very little likelihood of saving mangroves whose landward margins have been developed by man, a fact to bear in mind when selecting sites for conservation. The Matang mangroves of Malaysia is rare case of successful sustainable management of a tropical rain forest. Although the tools of management are available they are not widely applied. We particularly urge the Japanese mangrove wood-chips industry to look to long term sustainable use rather than short term gains. A suggestion is made to appeal to the new Government of Japan to take the lead in environmental friendliness especially to the rain forests of the Asia-Pacific region.  相似文献   

6.
Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km2, a 74% increase. Concurrently, salt marsh area decreased by 77.8 km2, a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.  相似文献   

7.
模拟海平面上升对红树植物秋茄的影响   总被引:8,自引:2,他引:8  
叶勇  卢昌义  郑逢中  谭凤仪 《生态学报》2004,24(10):2238-2244
研究了壤质沙土 (粗质土 )和粘土 (细质土 )条件下红树植物秋茄 (K andelia candel)对水位上升和淹水时间延长的反应。模拟海平面上升 30 cm导致红树林土壤的酸化 ,且细质土的酸化比粗质土严重 ;秋茄繁殖体的萌苗速度明显加快 ;促进秋茄的早期生长 ,尤其是导致最初 2个月茎高生长的增加 ,然而 ,后 2个月秋茄的相对生长率并不因水位的升高而增加 ;地下部 /地上部生物量比减小 ,在粗质土中尤为如此 ;幼苗粗根比例明显增加 ;叶片叶绿素 a/ b比值下降。在微型盆栽试验条件下 ,无论是高水位还是低水位 ,所有的秋茄繁殖体均成功萌发且幼苗在整个试验期间均成活。在野外条件下 ,秋茄幼苗成活率在高水位和低水位条件下均高达 90 %以上。野外条件下 ,无论是经胚轴萌发还是幼苗移栽的幼苗 ,最初 4个月的茎高生长均为低潮区高于高潮区 ,与微型试验结果相同。微型盆栽试验和野外种植试验均表明 ,海平面上升 30 cm对秋茄的萌发和早期生长具有促进作用  相似文献   

8.
Value of mangroves in coastal protection   总被引:3,自引:0,他引:3  
Nearly 30% of the coastline of Malaysia is undergoing erosion. Many of these areas are coastal mudflats, fringed by mangroves. Behind the mangroves there are usually agricultural areas that are protected by bunds from tidal inundation. These bunds are constructed by the Department of Irrigation and Drainage and it is the policy of the department to maintain a strip of mangroves between the bunds and the sea. Mangroves are known to reduce wave energy as waves travel through them. Thus, mangroves are used to protect the bunds from eroding. However, mangroves themselves are susceptible to erosion. Finding the best method in using this natural system of coastal protection is therefore important to the Department of Irrigation and Drainage. This paper looks at the various methods of using the systems developed to date.  相似文献   

9.
10.
Climate-change driven sea level rise causes a increase in salinity in coastal wetlands accelerating the alteration of the species composition. It triggers the gradual extinction of species, particularly the mangrove population which is intolerant of excessive salinity. Thus despite being crucial to a wide range of ecosystem services, mangroves have been identified as a vulnerable coastal biome. Hence restoration strategy of mangroves is undergoing rigorous research and experiments in literature at an interdisciplinary level. From a data-driven perspective, analysis of mangrove occurrence data could be the key to comprehend and predict mangrove behavior along different environmental parameters, and it could be important in formulating management strategy for mangrove rehabilitation and restoration. As salt marshes are the natural salt-accumulating halophytes, mitigating excessive salinity could be achieved by incorporating salt-marshes in mangrove restoration activities. This study intends to find a novel restoration strategy by assessing the frequent co-existence status of salt marshes, with the mangroves, and mangrove associates in different zones of degraded mangrove patches for species-rich plantation. To achieve this, we primarily design a novel methodological framework for the practice of knowledge discovery concerning the coexistence pattern of salt marshes, mangroves, and mangrove associates along with environmental parameters using a data mining paradigm of association rule mining. The proposed approach has the capability to uncover underlying facts and forecast likely facts that could automate the study in the field of ecological research to comprehend the occurrence of inter-species relationships. Our findings are based on published data gathered on the Sundarban Mangrove Forest, one of the world’s most important littoral forests. The existing literature reinforces the findings that include all the sets of frequently co-occurring mangroves, their associates, and salt marshes along the salinity gradient of coastal Sundarbans. A detailed understanding of the occurrence patterns of all these, along with the environmental variables, would be able to promote decision-making strategy. This framework is effective for both academia and stakeholders, especially the foresters/ conservation planners, to regulate the spread of salt marshes and the restoration of mangroves as well.  相似文献   

11.
Sea Level Rise (SLR) caused by climate change is impacting coastal wetlands around the globe. Due to their distinctive biophysical characteristics and unique plant communities, freshwater tidal wetlands are expected to exhibit a different response to SLR as compared with the better studied salt marshes. In this study we employed the Sea Level Affecting Marshes Model (SLAMM), which simulates regional- or local-scale changes in tidal wetland habitats in response to SLR, and adapted it for application in a freshwater-dominated tidal river system, the Hudson River Estuary. Using regionally-specific estimated ranges of SLR and accretion rates, we produced simulations for a spectrum of possible future wetland distributions and quantified the projected wetland resilience, migration or loss in the HRE through the end of the 21st century. Projections of total wetland extent and migration were more strongly determined by the rate of SLR than the rate of accretion. Surprisingly, an increase in net tidal wetland area was projected under all scenarios, with newly-formed tidal wetlands expected to comprise at least 33% of the HRE’s wetland area by year 2100. Model simulations with high rates of SLR and/or low rates of accretion resulted in broad shifts in wetland composition with widespread conversion of high marsh habitat to low marsh, tidal flat or permanent inundation. Wetland expansion and resilience were not equally distributed through the estuary, with just three of 48 primary wetland areas encompassing >50% of projected new wetland by the year 2100. Our results open an avenue for improving predictive models of the response of freshwater tidal wetlands to sea level rise, and broadly inform the planning of conservation measures of this critical resource in the Hudson River Estuary.  相似文献   

12.
To avoid submergence during sea‐level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea‐level rise may change. To compare how well mangroves and salt marshes accommodate sea‐level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table‐marker horizon system. Comparison of land movement with relative sea‐level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub‐root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small‐scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat‐forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment accretion, subsidence), mangrove replacement of salt marsh, with or without disturbance, will not necessarily alter vulnerability to sea‐level rise.  相似文献   

13.
V. Semeniuk 《Hydrobiologia》2013,708(1):23-43
A review of the Western Australian coast systems shows a range of models of how coastal wetlands could respond to climate change because it spans climates from tropical humid, tropical arid, to near-temperate humid, faces various oceans that drive coastal processes and maintain coastal landforms and habitats, and adjoins a range of hinterland types that develop variable coastal habitats, runoff and rainfall. It thus provides a plethora of settings that latitudinally will respond differentially to any changes in air temperatures, evaporation, rainfall patterns, freshwater influx, wind regimes and storm activity, and derivative responses such as changes in sediment supply, maintenance of coastal forms, coastal groundwater and biota. A review and examples of coastal wetland response to climate changes are provided from Walpole–Nornalup Inlet Estuary, Leschenault Inlet Estuary, the Point Becher area and King Sound.  相似文献   

14.
Patos Lagoon is located off the southern Brazilian coast and represents one of the largest coastal lagoons in the world. We estimated hydrological and physicochemical conditions associated with spatial variation in the abundance and diversity of freshwater fishes along the lagoon, and inter-annual variability in abundances of freshwater fishes occurring in its estuarine zone. During our study, the region experienced two periods of average rainfall and two periods with above-average rainfall. The characids Astyanax eigenmaniorum and Oligosarcus jenynsii and the siluriform Parapimelodus nigribarbis were the most abundant freshwater fishes in the estuary during wet periods when water levels were higher and salinity was lower. Increases in abundance of these species in the estuarine area, all of which members of primary-division freshwater families, apparently were associated with pulses of reproduction and passive transport from freshwater habitats located near middle and upper lagoon reaches. Abundance of species from secondary freshwater families, such as poeciliids and cichlids, were less correlated with hydrological conditions, and their patterns of occurrence in the estuary suggest active migration from nearby freshwater habitats draining into this area. Findings indicate that freshwater discharge in the basin and expansion/retraction of freshwaters in the middle-upper lagoon determined patterns of freshwater fish abundance and species richness in the estuarine zone.  相似文献   

15.
Question: Although mangrove forests are generally regarded as highly threatened, some studies have shown that mangrove canopies in the Pacific coast of Mexico have been increasing in recent decades. We investigated the possible causes driving this reported mangrove expansion. Location: The mangrove lagoons of Magdalena Bay in Baja California, Mexico. Methods: We used 50‐year‐old aerial photographs and 24‐year‐old satellite images to compare long‐term vegetation change, surveyed a coastal vegetation transect to analyse flooding levels, compiled six decades of tidal and oceanographic information, as well as hurricane data to analyse changes in storm frequency or sea‐level conditions, and used isotopic analysis to date the age of trees along the gradient. Results: A significant increase in mangrove cover has occurred in backwaters of the lagoons during the last 40 years, and especially during the El Niño anomalies of the 1980s and 1990s, while at the same time the mangrove fringe has been receding. Conclusions: The observed change can be attributed to the combined action of the warm surface waters of El Niño events and sea‐level rise. Jointly, these two effects are sufficient to flood large areas of previously non‐flooded salt flats, dispersing mangrove seedlings inland. The inland expansion of mangroves, however, does not ease conservation concerns, as it is the seaward fringes, and not the inland margins, that provide the most valuable environmental services for fisheries and coastal protection.  相似文献   

16.
L. Perry  K. Williams 《Oecologia》1996,105(4):428-434
Sabal palmetto (Walt.) Lodd. ex Schultes (cabbage palm) dominates the coastal limit of many forests in North Florida and Georgia, United States. Changes in saltwater flooding due to sea level rise have been credicted with pushing the coastal limit of cabbage palms inland, eliminating regeneration before causing death of mature trees. Localized freshwater discharge along the coast causes different forest stands to experience tidal flooding with waters that differ in salinity. To elucidate the effect of such variation on regeneration failure under tidal flooding, we examined relative effects of flooding and salinity on the performance of cabbage palm seedlings. We examined the relationship between seedling establishment and degree of tidal inundation in the field, compared the ability of seedlings to withstand tidal flooding at two coastal sites that differed in tidal water salinity, and investigated the physiological responses of cabbage palm seedlings to salinity and flooding in a factorial greenhouse experiment. Seedling survival was inversely correlated with depth and frequency of tidal flooding. Survival of seedlings at a coastal site flooded by waters low in salinity [c. 3 parts per thousand (ppt)] was greater than that at a site flooded by waters higher in salinity (up to 23 ppt). Greenhouse experiments revealed that leaves of seedlings in pots flushed twice daily with salt solutions of 0 ppt and 8 ppt exhibited little difference in midmorning net CO2 assimilation rates; those flushed with solutions of 15 ppt and 22 ppt, in contrast, had such low rates that they could not be detected. Net CO2 assimilation rates also declined with increasing salinity for seedlings in pots that were continuously inundated. Continuous root zone inundation appeared to ameliorate effects of salinity on photosynthesis, presumably due to increased salt concentrations and possibly water deficits in periodically flushed pots. Such problems associated with periodic flushing by salt water may play a role in the mortality of cabbage palm seedlings in the field. The salinity range in which plant performance plummeted in the greenhouse was consistent with the salinity difference found between our two coastal study sites, suggesting that variation in tidal water salinity along the coast plays an important role in the ability of cabbage palm seedlings to withstand tidal flooding.  相似文献   

17.
The regional distribution of mangrove species along the tropical NW coast of Australia is closely related to climate. In subhumid regions with rainfall >1000 mm/yr mangals have 12 species which are recurring and common. The climate becomes more arid southwards and species richness decreases: 8 species are common in mangals in semiarid regions and 5 species are common in arid regions. Rainfall influences the distribution of species across tidal flats because of direct recharge to groundwater systems and also because of subsurface seepage along the hinterland edge. Much of the increase in species diversity is located along high parts of tidal flats and along the edge of the hinterland. At the local level stratigraphy forms an important part of the hydrology by determining the distribution of aquifers and aquacludes. Fresh water seeps into the tidal lands via buried, discrete aquifers and dilutes the highly hypersaline groundwater. Mangroves inhabit these local areas above the less saline groundwater. The influence of rainfall and freshwater seepage on mangals is presented as a unifying theme which helps to explain distribution and diversity of mangroves at both a regional and local level.  相似文献   

18.
Coast of change: habitat loss and transformations in the Wadden Sea   总被引:2,自引:2,他引:0  
In the southern North Sea, coastal people commenced with habitat conversions 1,000 years ago. Partly interrupted in late medieval times by large-scale inundations of marshland, progressive embankments transformed the landward half of the amphibic transition zone between a limno-terrestric and a brackish-marine ecosystem into arable land and freshwater lakes. Sea walls rigidly separated the land from the sea. Dynamic transitional habitats have vanished. Areal loss has diminished the capacity of the Wadden Sea to dissipate wave and tidal energy. A coastal ecosystem once rich in marsh plants, seagrass and diatoms on mud flats became transformed into one with less autochthonous phototroph production, dominated by sandy tidal flats, and dependent primarily on allochthonous plankton supply. The large estuaries have been dredged to serve as shipping canals, and have lost most of their former retention and filter capacity. Riverine loads are now flushed right into the North Sea. Symptoms of a syndromatic coastal habitat degradation are diagnosed, leading to a decline in natural habitat diversity. The conventional on-line coastal protection may not achieve a sustainable coastal habitat configuration. At sedimentary coasts immobilised by dikes and petrified shores, a more flexible response to sea level rise is recommended.  相似文献   

19.
Mangroves are among the world's most carbon‐dense ecosystems, but they are threatened by rapid climate change and rising sea levels. The accumulation and decomposition of soil organic matter (SOM) are closely tied to mangroves' carbon sink functions and resistance to rising sea levels. However, few studies have investigated the response of mangrove SOM dynamics to likely future environmental conditions. We quantified how mangrove SOM decay is affected by predicted global warming (+4°C), sea level changes (simulated by altering of the inundation duration to 0, 2, and 6 hr/day), and their interaction. Whilst changes in inundation duration between 2 and 6 hr/day did not affect SOM decay, the treatment without inundation led to a 60% increase. A warming of 4°C caused SOM decay to increase by 21%, but longer inundation moderated this temperature‐driven increase. Our results indicate that (a) sea level rise is unlikely to decrease the SOM decay rate, suggesting that previous mangrove elevation gain, which has allowed mangroves to persist in areas of sea level rise, might result from changes in root production and/or mineral sedimentation; (b) sea level fall events, predicted to double in frequency and area, will cause periods of intensified SOM decay; (c) changing tidal regimes in mangroves due to sea level rise might attenuate increases in SOM decay caused by global warming. Our results have important implications for forecasting mangrove carbon dynamics and the persistence of mangroves and other coastal wetlands under future scenarios of climate change.  相似文献   

20.
Sea-level rise threatens low-lying coastal ecosystems globally. In Florida, USA, salinity stress due to increased tidal flooding contributes to the dramatic and well documented decline of species-rich coastal forest areas along the Gulf of Mexico. Here, we present the results of a study of coastal forest stand dynamics in thirteen 400 m2 plots representing an elevation gradient of 0.58–1.1 m affected by tidal flooding and rising sea levels. We extended previously published data from 1992–2000 to 2005 to quantify the full magnitude of the 1998–2002 La Niña-associated drought. Populations of the dominant tree species, Sabal palmetto (cabbage palm), declined more rapidly during 2000–2005 than predicted from linear regressions based on the 1992–2000 data. Dramatic increases in Juniperus virginiana (Southern red cedar) and S. palmetto mortality during 2000–2005 as compared with 1995–2000 are apparently due to the combined effects of a major drought and ongoing sea-level rise. Additionally, coastal forest stands continued to decline in species richness with increased tidal flooding frequency and decreasing elevation. Stable isotope (H, O) analyses demonstrate that J. virginiana accesses fresher water sources more than S. palmetto . Carbon isotopes reveal increasing δ 13C enrichment of S. palmetto and J. virginiana with increased tidal flooding and decreased elevation, demonstrating increasing water stress in both species. Coastal forests with frequent tidal flooding are unable to support species-rich forests or support regeneration of the most salt-tolerant tree species over time. Given that rates of sea-level rise are predicted to increase and periodic droughts are expected to intensify in the future due to global climate change, coastal forest communities are in jeopardy if their inland retreat is restricted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号