首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mothers that experience different individual or environmental conditions may produce different proportions of male to female offspring. The Trivers‐Willard hypothesis, for instance, suggests that mothers with different qualities (size, health, etc.) will use different sex ratios if maternal quality differentially affects sex‐specific reproductive success. Condition‐dependent, or facultative, sex ratio strategies like these allow multiple sex ratios to coexist within a population. They also create complex population structure due to the presence of multiple maternal conditions. As a result, modeling facultative sex ratio evolution requires not only sex ratio strategies with multiple components, but also two‐sex population models with explicit stage structure. To this end, we combine nonlinear, frequency‐dependent matrix models and multidimensional adaptive dynamics to create a new framework for studying sex ratio evolution. We illustrate the applications of this framework with two case studies where the sex ratios depend one of two possible maternal conditions (age or quality). In these cases, we identify evolutionarily singular sex ratio strategies, find instances where one maternal condition produces exclusively male or female offspring, and show that sex ratio biases depend on the relative reproductive value ratios for each sex.  相似文献   

2.
The evolution of biodiversity is a major issue of modern biology, and it is becoming increasingly topical as the ongoing erosion of diversity puts serious threats on human well‐being. An elementary mechanism that allows maintaining diversity is the interplay between dispersal and heterozygote selective disadvantage, which can lead to self‐sustainable spatial genetic structures and is central to the stability of hybrid zones. Theoretical studies supporting the importance of this mechanism assume a balanced sex‐ratio and a heterozygote disadvantage equally affecting both sexes, despite the multiplicity of empirical evidence that (i) adult sex‐ratio is usually biased towards either male or female and that (ii) heterozygote disadvantage often affects a single sex. We expanded the existing theory by weighting the strength of selection against heterozygote according to the biased in sex‐ratio and in heterozygote disadvantage. The range of conditions allowing for the maintenance of polymorphism can then either double or vanish. We discuss the implications of such finding for birds, mammals and insects diversity. Finally, we provide simple analytical predictions about the effect of those biased on the width and speed of hybrid zones and on the time for the spread of beneficial mutations through such zones.  相似文献   

3.
Sex‐biased dispersal is a much‐discussed feature in literature on dispersal. Diverse hypotheses have been proposed to explain the evolution of sex‐biased dispersal, a difference in dispersal rate or dispersal distance between males and females. An early hypothesis has indicated that it may rely on the difference in sex chromosomes between males and females. However, this proposal was quickly rejected without a real assessment. We propose a new perspective on this hypothesis by investigating the evolution of sex‐biased dispersal when dispersal genes are sex‐linked, that is when they are located on the sex chromosomes. We show that individuals of the heterogametic sex disperse relatively more than do individuals of the homogametic sex when dispersal genes are sex‐linked rather than autosomal. Although such a sex‐biased dispersal towards the heterogametic sex is always observed in monogamous species, the mating system and the location of dispersal genes interact to modulate sex‐biased dispersal in monandry and polyandry. In the context of the multicausality of dispersal, we suggest that sex‐linked dispersal genes can influence the evolution of sex‐biased dispersal.  相似文献   

4.
为了明确班氏跳小蜂不同生殖方式及雌蜂密度对种群的影响,研究了班氏跳小蜂在不同雌雄比例的两性生殖和孤雌生殖条件下以及不同雌蜂密度情况时,其寄生率及子代的雌性比例。结果表明:班氏跳小蜂可进行两性生殖和产雄孤雌生殖,不同雌雄比例的两性生殖及孤雌生殖的寄生率随着雌蜂数量的增加不断升高,雌雄比为20∶1时的寄生率最高,为49.13%;在两性生殖雌雄比为15∶1的情况下,其后代雌性最高;不同粉蚧密度条件下,2头雌蜂同时存在时,其寄生率和子代性比均最高。说明两性生殖(雌雄比为15∶1)和2头雌蜂同时存在条件下,更利于班氏跳小蜂种群发展。  相似文献   

5.
Harvesting is often size‐selective, and in species with sexual size dimorphism, it may also be sex‐selective. A powerful approach to investigate potential consequences of size‐ and/or sex‐selective harvesting is to simulate it in a demographic population model. We developed a population‐based integral projection model for a size‐ and sex‐structured species, the commonly exploited pike (Esox lucius). The model allows reproductive success to be proportional to body size and potentially limited by both sexes. We ran all harvest simulations with both lower size limits and slot limits, and to quantify the effects of selective harvesting, we calculated sex ratios and the long‐term population growth rate (λ). In addition, we quantified to what degree purely size‐selective harvesting was sex‐selective, and determined when λ shifted from being female to male limited under size‐ and sex‐selective harvesting. We found that purely size‐selective harvest can be sex‐selective, and that it depends on the harvest limits and the size distributions of the sexes. For the size‐ and sex‐selective harvest simulations, λ increased with harvest intensity up to a threshold as females limited reproduction. Beyond this threshold, males became the limiting sex, and λ decreased as more males were harvested. The peak in λ, and the corresponding sex ratio in harvest, varied with both the selectivity and the intensity of the harvest simulation. Our model represents a useful extension of size‐structured population models as it includes both sexes, relaxes the assumption of female dominance, and accounts for size‐dependent fecundity. The consequences of selective harvesting presented here are especially relevant for size‐ and sex‐structured exploited species, such as commercial fisheries. Thus, our model provides a useful contribution toward the development of more sustainable harvesting regimes.  相似文献   

6.
In sexually reproducing species, resources may theoretically be distributed with bias to the production of male or female offspring in response to the condition of the mother, commonly recognized as sex allocation. Using a recently characterized sex‐specific molecular marker, we tested for maternal sex allocation (i.e. maternal primary sex ratio bias and sex‐specific offspring investment) in captive laboratory‐bred western mosquitofish (Gambusia affinis) at early stages of offspring development. We found no statistical evidence to support sex allocation in G. affinis, based on maternal condition. In addition, we found little evidence for correlations between maternal condition and investment in the condition (mass) of individual offspring (of one sex or the other), although we did find that larger mothers tended to have higher fecundity.  相似文献   

7.
We analyze models of evolution of sex ratio conditional on habitat quality and with sex specific dispersal. Previous analysis concluded that the main constraint on sex ratio is habitat choice and leads to overproduction of the most dispersing sex in low quality habitat. Here, we analyze three models with finite local populations and show that constraints on sex ratio can balance constraints on habitat choice. In the first model, dispersal rates are fixed. In the second, sex specific dispersal can evolve independently of the habitat quality. These models suggests that sex ratio evolution can lead to higher global dispersal rates (mean of male and female dispersal rates) from high quality habitats. In the last model dispersal evolves conditionally with both sex and habitat. Our models suggests that conditions for overproduction of the most dispersing sex in high quality habitat are frequent. The predictions of the models with evolving dispersal contrast with patterns generally described in nature. We discuss possible reasons of this difference.  相似文献   

8.
Fig‐pollinating wasps (Agaonidae) only reproduce within fig tree inflorescences (figs). Agaonid offspring sex ratios are usually female‐biased and often concur with local mate competition theory (LMC). LMC predicts less female‐bias when several foundresses reproduce in a fig due to reduced relatedness among intra‐sexually competing male offspring. Clutch size, the offspring produced by each foundress, is a strong predictor of agaonid sex ratios and correlates negatively with foundress number. However, clutch size variation can result from several processes including egg load (eggs within a foundress), competition among foundresses and oviposition site limitation, each of which can be used as a sex allocation cue. We introduced into individual Ficus racemosa figs single Ceratosolen fusciceps foundresses and allowed each to oviposit from zero to five hours thus variably reducing their eggs‐loads and then introduced each wasp individually into a second fig. Offspring sex ratio (proportion males) in second figs correlated negatively with clutch size, with males produced even in very small clutches. Ceratosolen fusciceps lay mainly male eggs first and then female eggs. Our results demonstrate that foundresses do not generally lay or attempt to lay a ‘fixed’ number of males, but do ‘reset to zero’ their sex allocation strategy on entering a second fig. With decreasing clutch size, gall failure increased, probably due to reduced pollen. We conclude that C. fusciceps foundresses can use their own egg loads as a cue to facultatively adjust their offspring sex ratios and that foundresses may also produce more ‘insurance’ males when they can predict increasing rates of offspring mortality.  相似文献   

9.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms.  相似文献   

10.
Genetic crosses between the dioecious Bryonia dioica (Cucurbitaceae) and the monoecious B. alba in 1903 provided the first clear evidence for Mendelian inheritance of dioecy and made B. dioica the first organism for which XY sex‐determination was experimentally proven. Applying molecular tools to this system, we developed a sex‐linked sequence‐characterized amplified region (SCAR) marker for B. dioica and sequenced it for individuals representing the full geographic range of the species from Scotland to North Africa. For comparison, we also sequenced this marker for representatives of the dioecious B. cretica, B. multiflora and B. syriaca, and monoecious B. alba. In no case did any individual, male or female, yield more than two haplotypes. In northern Europe, we found strong linkage between our marker and sex, with all Y‐sequences being identical to each other. In southern Europe, however, the linkage between our marker and sex was weak, with recombination detected within both the X‐ and the Y‐homologues. Population genetic analyses suggest that the SCAR marker experienced different evolutionary pressures in northern and southern Europe. These findings fit with phylogenetic evidence that the XY system in Bryonia is labile and suggest that the genus may be a good system in which to study the early steps of sex chromosome evolution.  相似文献   

11.
1. Here we examine how sex ratio variation in house sparrow broods interacts with other demographic traits and parental characteristics to improve the understanding of adaptive significance and demographic effects on variation in sex ratio. 2. The sex ratio in complete broods did not deviate significantly from parity (54.9% males). 3. There was sex-specific seasonal variation in the probability of recruitment. Male nestlings that hatched late in the breeding season had larger probability of surviving than early hatched males. 4. An adaptive adjustment of sex ratio should favour production of an excess of males late in the breeding season. Accordingly, the proportion of male offspring increased throughout the breeding season. 5. A significant nonlinear relationship was present between sex ratio and age of the female. However, there was no relationship between parental phenotype and standardized hatch day that could explain the observed seasonal change in sex ratio. 6. The sex-specific number of offspring recruited by a pair to subsequent generations was closely related to the brood sex ratio. 7. These results indicate an adaptive adjustment of sex ratio to seasonal variation in environmental conditions that affects the offspring fitness of the two sexes differently. Our results also suggest that such a sex ratio variation can strongly influence the demography and structural composition of small passerine populations.  相似文献   

12.
Modern sexual selection theory indicates that reproductive costs rather than the operational sex ratio predict the intensity of sexual selection. We investigated sexual selection in the polygynandrous common lizard Lacerta vivipara . This species shows male aggression, causing high mating costs for females when adult sex ratios (ASR) are male-biased. We manipulated ASR in 12 experimental populations and quantified the intensity of sexual selection based on the relationship between reproductive success and body size. In sharp contrast to classical sexual selection theory predictions, positive directional sexual selection on male size was stronger and positive directional selection on female size weaker in female-biased populations than in male-biased populations. Thus, consistent with modern theory, directional sexual selection on male size was weaker in populations with higher female mating costs. This suggests that the costs of breeding, but not the operational sex ratio, correctly predicted the strength of sexual selection.  相似文献   

13.
The relative rate of evolution for sex‐biased genes has often been used as a measure of the strength of sex‐specific selection. In contrast to studies in a wide variety of animals, far less is known about the molecular evolution of sex‐biased genes in plants, particularly in dioecious angiosperms. Here, we investigate the gene expression patterns and evolution of sex‐biased genes in the dioecious plant Salix viminalis. We observe lower rates of sequence evolution for male‐biased genes expressed in the reproductive tissue compared to unbiased and female‐biased genes. These results could be partially explained by the lower codon usage bias for male‐biased genes leading to elevated rates of synonymous substitutions compared to unbiased genes. However, the stronger haploid selection in the reproductive tissue of plants, together with pollen competition, would also lead to higher levels of purifying selection acting to remove deleterious variation. Future work should focus on the differential evolution of haploid‐ and diploid‐specific genes to understand the selective dynamics acting on these loci.  相似文献   

14.
Population sex ratio is an important metric for wildlife management and conservation, but estimates can be difficult to obtain, particularly for sexually monomorphic species or for species that differ in detection probability between the sexes. Noninvasive genetic sampling (NGS) using polymerase chain reaction (PCR) has become a common method for identifying sex from sources such as hair, feathers or faeces, and is a potential source for estimating sex ratio. If, however, PCR success is sex‐biased, naively using NGS could lead to a biased sex ratio estimator. We measured PCR success rates and error rates for amplifying the W and Z chromosomes from greater sage‐grouse (Centrocercus urophasianus) faecal samples, examined how success and error rates for sex identification changed in response to faecal sample exposure time, and used simulation models to evaluate precision and bias of three sex assignment criteria for estimating population sex ratio with variable sample sizes and levels of PCR replication. We found PCR success rates were higher for females than males and that choice of sex assignment criteria influenced the bias and precision of corresponding sex ratio estimates. Our simulations demonstrate the importance of considering the interplay between the sex bias of PCR success, number of genotyping replicates, sample size, true population sex ratio and accuracy of assignment rules for designing future studies. Our results suggest that using faecal DNA for estimating the sex ratio of sage‐grouse populations has great potential and, with minor adaptations and similar marker evaluations, should be applicable to numerous species.  相似文献   

15.
The effective population size is a central concept for understanding evolutionary processes in a finite population. We employ Fisher's reproductive value to estimate the ratio of effective to actual population size for an age‐structured population with two sexes using random samples of individual vital rates. The population may be subject to environmental stochasticity affecting the vital rates. When the mean sex ratio at birth is known, improved efficiency is obtained by utilizing the records of total number of offspring rather than considering separately female and male offspring. We also show how to incorporate uncertain paternity.  相似文献   

16.
Social insect sex and caste ratios are well‐studied targets of evolutionary conflicts, but the heritable factors affecting these traits remain unknown. To elucidate these factors, we carried out a short‐term artificial selection study on female caste ratio in the ant Monomorium pharaonis. Across three generations of bidirectional selection, we observed no response for caste ratio, but sex ratios rapidly became more female‐biased in the two replicate high selection lines and less female‐biased in the two replicate low selection lines. We hypothesized that this rapid divergence for sex ratio was caused by changes in the frequency of infection by the heritable bacterial endosymbiont Wolbachia, because the initial breeding stock varied for Wolbachia infection, and Wolbachia is known to cause female‐biased sex ratios in other insects. Consistent with this hypothesis, the proportions of Wolbachia‐infected colonies in the selection lines changed rapidly, mirroring the sex ratio changes. Moreover, the estimated effect of Wolbachia on sex ratio (~13% female bias) was similar in colonies before and during artificial selection, indicating that this Wolbachia effect is likely independent of the effects of artificial selection on other heritable factors. Our study provides evidence for the first case of endosymbiont sex ratio manipulation in a social insect.  相似文献   

17.
Females can benefit from mate choice for male traits (e.g. sexual ornaments or body condition) that reliably signal the effect that mating will have on mean offspring fitness. These male‐derived benefits can be due to material and/or genetic effects. The latter include an increase in the attractiveness, hence likely mating success, of sons. Females can potentially enhance any sex‐biased benefits of mating with certain males by adjusting the offspring sex ratio depending on their mate's phenotype. One hypothesis is that females should produce mainly sons when mating with more attractive or higher quality males. Here we perform a meta‐analysis of the empirical literature that has accumulated to test this hypothesis. The mean effect size was small (r = 0.064–0.095; i.e. explaining <1% of variation in offspring sex ratios) but statistically significant in the predicted direction. It was, however, not robust to correction for an apparent publication bias towards significantly positive results. We also examined the strength of the relationship using different indices of male attractiveness/quality that have been invoked by researchers (ornaments, behavioural displays, female preference scores, body condition, male age, body size, and whether a male is a within‐pair or extra‐pair mate). Only ornamentation and body size significantly predicted the proportion of sons produced. We obtained similar results regardless of whether we ran a standard random‐effects meta‐analysis, or a multi‐level, Bayesian model that included a correction for phylogenetic non‐independence. A moderate proportion of the variance in effect sizes (51.6–56.2%) was due to variation that was not attributable to sampling error (i.e. sample size). Much of this non‐sampling error variance was not attributable to phylogenetic effects or high repeatability of effect sizes among species. It was approximately equally attributable to differences (occurring for unknown reasons) in effect sizes among and within studies (25.3, 22.9% of the total variance). There were no significant effects of year of publication or two aspects of study design (experimental/observational or field/laboratory) on reported effect sizes. We discuss various practical reasons and theoretical arguments as to why small effect sizes should be expected, and why there might be relatively high variation among studies. Currently, there are no species where replicated, experimental studies show that mothers adjust the offspring sex ratio in response to a generally preferred male phenotype. Ultimately, we need more experimental studies that test directly whether females produce more sons when mated to relatively more attractive males, and that provide the requisite evidence that their sons have higher mean fitness than their daughters.  相似文献   

18.
Abstract When costs and benefits of raising sons and daughters differ between environments, parents may be selected to modify their investment into male and female offspring. In two recently colonized environments, breeding female house finches (Carpodacus mexicanus) modified the sex and growth of their offspring in relation to the order in which eggs were laid in a clutch. Here we show that, in both populations, these maternal effects strongly biased frequency distribution of tarsus size of fully grown males and females and ultimately produced population divergence in this trait. Although in each population, male and female offspring show a wide range of growth patterns, maternal modifications of sex‐ratio in relation to egg‐laying order resulted in under‐representation of the morphologies that were selected against and over‐representation of morphologies that were favoured by the local selection on juveniles. The result of these maternal adjustments was fast phenotypic change in sexual size dimorphism within and between populations. Maternal manipulations of offspring morphologies may be especially important at the initial stages of population establishment in the novel environments and may have facilitated recent colonization of much of North America by the house finch.  相似文献   

19.
20.
1. The monarch has undergone considerable population declines over the past decade, and the governments of Mexico, Canada, and the United States have agreed to work together to conserve the species. 2. Given limited resources, understanding where to focus conservation action is key for widespread species like monarchs. To support planning for continental‐scale monarch habitat restoration, we address the question of where restoration efforts are likely to have the largest impacts on monarch butterfly (Danaus plexippus Linn.) population growth rates. 3. We present a spatially explicit demographic model simulating the multi‐generational annual cycle of the eastern monarch population, and use the model to examine management scenarios, some of which focus on particular regions of North America. 4. Improving the monarch habitat in the north central or southern parts of the monarch range yields a slightly greater increase in the population growth rate than restoration in other regions. However, combining restoration efforts across multiple regions yields population growth rates above 1 with smaller simulated improvements in habitat per region than single‐region strategies. 5. S ynthesis and applications: These findings suggest that conservation investment in projects across the full monarch range will be more effective than focusing on one or a few regions, and will require international cooperation across many land use categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号