首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Characterizing phenotypic differences between sexual and asexual organisms is a critical step towards understanding why sexual reproduction is so common. Because asexuals are often polyploid, understanding how ploidy influences phenotype is directly relevant to the study of sex and will provide key insights into the evolution of ploidy-level variation. The well-established association between genome size and cell cycle duration, evidence for a link between genome size and tissue regeneration rate and the growing body of research showing that ploidy influences growth rate and gene expression led us to hypothesize that healing and tissue regeneration might be affected by ploidy-level variation. We evaluated this hypothesis by measuring the rate of regeneration of antenna tissue of Potamopyrgus antipodarum, a New Zealand snail characterized by frequent coexistence between diploid sexuals and polyploid asexuals. Antennae of triploid and presumptive tetraploid asexuals regenerated more rapidly than the antennae of diploid sexuals, but regeneration rate did not differ between triploids and tetraploids. These results suggest either that ploidy elevation has nonlinear positive effects on tissue regeneration and/or that factors associated directly with reproductive mode affect regeneration rate more than ploidy level. The results of this study also indicate that the lower ploidy of sexual P. antipodarum is unlikely to confer advantages associated with more rapid regeneration.  相似文献   

2.
Why sex is so common remains unclear; what is certain is that the predominance of sex despite its profound costs means that it must confer major advantages. Here, we use elemental and nucleic acid assays to evaluate a key element of a novel, integrative hypothesis considering whether sex might be favoured because of differences in body composition between sexuals and asexuals. We found that asexual Potamopyrgus antipodarum, a New Zealand snail, have markedly higher bodily phosphorus and nucleic acid content per unit mass than sexual counterparts. These differences coincide with and are almost certainly linked to the higher ploidy of the asexuals. Our results are the first documented body composition differences between sexual and asexual organisms, and the first detected phenotypic difference between sexual and asexual P. antipodarum, an important natural model system for the study of the maintenance of sex. These findings also verify a central component of our hypothesis that competition between diploid sexuals and polyploid asexuals could be influenced by phosphorus availability.  相似文献   

3.
DNA methylation is an epigenetic mechanism that has the potential to affect plant phenotypes and that is responsive to environmental and genomic stresses such as hybridization and polyploidization. We explored de novo methylation variation that arises during the formation of triploid asexual dandelions from diploid sexual mother plants using methylation‐sensitive amplified fragment length polymorphism (MS‐AFLP) analysis. In dandelions, triploid apomictic asexuals are produced from diploid sexual mothers that are fertilized by polyploid pollen donors. We asked whether the ploidy level change that accompanies the formation of new asexual lineages triggers methylation changes that contribute to heritable epigenetic variation within novel asexual lineages. Comparison of MS‐AFLP and AFLP fragment inheritance in a diploid × triploid cross revealed de novo methylation variation between triploid F1 individuals. Genetically identical offspring of asexual F1 plants showed modest levels of methylation variation, comparable to background levels as observed among sibs in a long‐established asexual lineage. Thus, the cross between ploidy levels triggered de novo methylation variation between asexual lineages, whereas it did not seem to contribute directly to variation within new asexual lineages. The observed background level of methylation variation suggests that considerable autonomous methylation variation could build up within asexual lineages under natural conditions.  相似文献   

4.
A species’ mode of reproduction, sexual or asexual, will affect its ecology and evolution. In many species, asexuality is related to polyploidy. In Taraxacum, apomicts are triploid, and sexuals are diploid. To disentangle the effects of ploidy level and reproductive mode on life‐history traits, we compared established apomictic Taraxacum genotypes with newly synthesized apomictic genotypes, obtained from diploid–triploid crosses. Diploid–triploid crossing is probably the way that most apomictic lineages originate. New genotypes had on average a much lower seed set than established genotypes. Established genotypes differed on average from new genotypes, in particular under shaded conditions: the established genotypes had longer leaves and flowered later. The differences between new and established triploids resembled the differences that have been found between sexual diploids and established apomictic triploids. We conclude that ploidy differences alone are not directly responsible for observed differences between sexual diploid and apomictic triploid dandelions.  相似文献   

5.
Evolutionary and ecological factors that explain natural variation in ploidy level remain poorly understood. One intriguing possibility is that nutrient costs associated with higher per‐cell nucleic acid content could differentially influence the fitness of different ploidy levels. Here, we test this hypothesis by determining whether access to phosphorus (P), a main component of nucleic acids, differentially affects growth rate in asexual freshwater snails (Potamopyrgus antipodarum) that differ in ploidy. As expected if larger genomes generate higher dietary P requirements, tetraploid P. antipodarum experienced a more than twofold greater reduction in growth rate in low‐P versus high‐P conditions relative to triploids. Mirroring these results, tetraploid P. antipodarum also had a significant reduction in body P content under low P relative to high P, whereas triploid body P content was unaffected. Taken together, these results set the stage for the possibility that P availability could influence the distribution and relative frequency of P. antipodarum of different ploidy levels. These findings could be applicable to many other animal taxa featuring ploidy‐level variation, which includes many mixed sexual/asexual taxa.  相似文献   

6.
M Neiman  A D Kay  A C Krist 《Heredity》2013,110(2):152-159
The predominance of sexual reproduction despite its costs indicates that sex provides substantial benefits, which are usually thought to derive from the direct genetic consequences of recombination and syngamy. While genetic benefits of sex are certainly important, sexual and asexual individuals, lineages, or populations may also differ in physiological and life history traits that could influence outcomes of competition between sexuals and asexuals across environmental gradients. Here, we address possible phenotypic costs of a very common correlate of asexuality, polyploidy. We suggest that polyploidy could confer resource costs related to the dietary phosphorus demands of nucleic acid production; such costs could facilitate the persistence of sex in situations where asexual taxa are of higher ploidy level and phosphorus availability limits important traits like growth and reproduction. We outline predictions regarding the distribution of diploid sexual and polyploid asexual taxa across biogeochemical gradients and provide suggestions for study systems and empirical approaches for testing elements of our hypothesis.  相似文献   

7.
The increased interest in asexual organisms calls for in-depth studies of asexual complexes that actively give rise to new clones. We present an extensive molecular study of the Otiorhynchus scaber (Coleoptera, Curculionidae) weevil system. Three forms have traditionally been recognized: diploid sexuals, triploid, and tetraploid parthenogens. All forms coexist in a small central area, but only the polyploid parthenogens have colonized marginal areas. Analyzing the phylogenetic relationship, based on three partial mitochondrial genes, of 95 individuals from 19 populations, we find that parthenogenesis and polyploidy have originated at least three times from different diploid lineages. We observe two major mitochondrial lineages, with over 2.5% sequence divergence between the most basal groups within them, and find that current distribution and phylogenetic relationships are weakly correlated. Quite unexpectedly, we also discover diploid clones that coexist with, and are morphologically indistinguishable from, the diploid sexual females. Our results support that these diploid clones are derived directly from the diploid sexuals. We also find that it is mainly an increase in ploidy level and not the benefits of asexual reproduction that confers to polyploid parthenogens the advantage over their diploid sexual relatives.  相似文献   

8.
Levels and distribution of genetic variation were studied in central and western European populations of Taraxacum section Ruderalia containing differing mixtures of sexual diploid and asexual triploid plants. All sexual populations were panmictic with their variation partitioned mainly among populations. Genotypic diversity in triploid samples was very high with few clones widespread and many clones restricted to one or a few populations. Extensive amounts of gene (pollen) flow between the diploid and triploid components of a population were inferred from the following data: (1) the two ploidy levels share all major allozyme polymorphisms; (2) the intrapopulational homogeneity in genic variation between diploids and triploids contrasts strongly with the geographic differentiation at each ploidy level separately; (3) population-unique alleles simultaneously occur at the two ploidy levels; (4) not only sexuals but also asexuals generally simulate Hardy-Weinberg expectations. Most likely, intrapopulational gene exchange occurs bidirectionally by mechanisms such as reductional pollen meiosis in apomictic plants, facultative apomixis, and formation of unreduced gametes in sexuals. Thus, diploid and triploid Taraxacum section Ruderalia are less genetically isolated than has previously been supposed and probably form a cohesive evolutionary unit with the level at which gene pools are shared differing by population.  相似文献   

9.
This study concerns the contribution of directional asymmetry (DA) and fluctuating asymmetry (FA) as a characterization of variation in six sexual (diploid) and two asexual (triploid and tetraploid) populations of the weevil Otiorhynchus alpicola. It is shown that DA in sexual populations is about 1 % of the mean length of each of the seven bilateral traits and the average contribution of DA to trait variation is even lower in asexual populations (about 0.85 in triploids and 0.65 in tetraploids forms). The average contribution of FA to the total phenotypic variance is about 23 %, 12 % and 19 % in diploid, triploid and tetraploid populations, respectively. Since FA is generally regarded as a measure of developmental stability, our data indicate that triploid forms of O. alpicola are developmentally more stable than diploid and tetraploid forms. The relationship between the level of ploidy and FA is discussed.  相似文献   

10.
Asexual lineages derived from dioecious taxa are typically assumed to be all female. Even so, asexual females from a variety of animal taxa occasionally produce males. The existence of these males sets the stage for potential gene flow across asexual lineages as well as between sexual and asexual lineages. A recent study showed that asexual triploid female Potamopyrgus antipodarum, a New Zealand freshwater snail often used as a model to study sexual reproduction, occasionally produce triploid male offspring. Here, we show that these triploid male P. antipodarum (1) have testes that produce morphologically normal sperm, (2) make larger sperm cells that contain more nuclear DNA than the sperm produced by diploid sexual males, and (3) produce sperm that range in DNA content from haploid to diploid, and are often aneuploid. Analysis of meiotic chromosomes of triploid males showed that aberrant pairing during prophase I probably accounts for the high variation in DNA content among sperm. These results indicate that triploid male P. antipodarum produce sperm, but the extent to which these sperm are able to fertilize female ova remains unclear. Our results also suggest that the general assumption of sterility in triploid males should be more closely examined in other species in which such males are occasionally produced. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 227–234.  相似文献   

11.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

12.
Natural animal populations are rarely screened for ploidy-level variation at a scale that allows detection of potentially important aberrations of common ploidy patterns. This type of screening can be especially important for the many mixed sexual/asexual systems in which sexuals are presumed to be dioecious diploids and asexuals are assumed to be triploid and all-female. For example, elevation of ploidy level above triploidy can be a source of genetic variation and raises the possibility of gene flow among ploidy levels and to asexual lineages. We used flow cytometry and mtDNA sequencing to characterize ploidy level and genome size in Potamopyrgus antipodarum, a New Zealand freshwater snail where obligate sexual (presumed diploid and dioecious) and obligate apomictic asexual (presumed triploid and nearly all female) individuals frequently coexist. We documented the widespread occurrence and multiple origins of polyploid males and individuals with >3× ploidy, and find that both are likely to be descended from asexual females. Our survey also suggested the existence of extensive variation in genome size. The discovery of widespread variation in ploidy level and genome size in such a well-studied system highlights the importance of broad, extensive, and ecologically representative sampling in uncovering ploidy level and genome-size variation in natural populations.  相似文献   

13.
The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single‐nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype (‘1A’) was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.  相似文献   

14.
The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.  相似文献   

15.
Analysis of 368 plants derived from 239 natural populations showed that this taxonomically perplexing and wide-ranging species-complex consists of diploids (n = 8), tetraploids, hexaploids and octoploids. Microsporocytes were the source of most of the chromosome counts. Meiosis was basically regular. Multivalent formation was uncommon, but 11 % of all the plants examined had one or more full-sized extra chromosomes. The frequency of plants with extra chromosomes varied significantly among the taxa, from 0 (five varieties) to over 20 % (two varieties). Except in one instance, where one population yielded a diploid and a triploid, different ploidy levels were not found in the same population. The frequency of diploid, tetraploid, hexaploid and octoploid populations was, respectively, 71, 22, 4 and 2%. Variety obovatum appears to be exclusively diploid, and var. aphanactis exclusively tetraploid. Diploids and one or more polyploid levels occurred in the other taxa. No correlation was found between polyploidy and geological history, soils, topography or climate, nor were the polyploids more widely distributed than the diploids. Some of the polyploid populations seem to have been derived from inter-varietal hybridizations, but others do not. The complex has a “pillar” structure in which 10 diploid taxa support a three-level polyploid superstructure. The available evidence suggests that the major role of polyploidy here has been to stabilize the products of intra- and inter-varietal hybridizations.  相似文献   

16.
Two tetraploid isolates of Meloidogyne hapla, 86P and E289P, with haploid chromosome numbers of 34 and 28, respectively, were studied cytogenetically and biologically in relation to the diploid populations, 86-Va (n = 17) and E289-Taiwan (n = 14), from which they had been originally isolated. Both isolates were quite stable, converting to diploidy at the low rate of about 2.5%. The tetraploid isolate 86P maintained itself in competition with its diploid counterpart in mixed cultures, although an initial frequency of 50% polyploidy was reduced to about 9% at the end of the sixth generation. Both tetraploid isolates could maintain themselves in greenhouse cultures without artificial selection for at least 2 years. Crosses between diploid females and tetraploid males resulted in a few triploid females that produced mostly nonviable eggs, suggesting partial reproductive isolation between the two ploidy forms. Ten generations of propagation of only polyploid females of isolate 86P that were associated with males failed to yield an obligatorily amphimictic isolate that would not convert at all to diploidy. If one accepts a previous assumption that the present day amphimictic root-knot nematodes are tetraploids derived from diploid ancestors, results of the present study are not inconsistent with an evolutionary trend toward an even higher level of ploidy in Meloidogyne, presumably octaploidy.  相似文献   

17.
Paspalum simplex is a grass distributed throughout the phytogeographic Chaco region in South America from which sexual diploid and apomictic tetraploid races have been reported. We analysed native populations to determine their homogeneity of ploidy level, and the relationship between geographic distribution, ploidy levels, and reproductive systems. The ploidy level was established for 379 plants from 32 wild populations. Tetraploidy and apomixis constitute the most common combination for this species all over the Chaco region. Apomictic hexaploid plants were found associated with 4x populations. Diploids were confined to a small sector of the region. One sexual triploid plant arose from seed harvested in a pure 2x population, and one apomictic 3x plant was found in a mixed 2x-4x population. The results suggest that P. simplex is a core agamic complex characteristic of the Chaco region from which other apomictic polyploid species of the subgenus Anachyris could have evolved. Received July 24, 2002; accepted September 12, 2002 Published online: December 11, 2002  相似文献   

18.
Negative reproductive interactions are likely to be strongest between close relatives and may be important in limiting local coexistence. In plants, interspecific pollen flow is common between co‐occurring close relatives and may serve as the key mechanism of reproductive interference. Agamic complexes, systems in which some populations reproduce through asexual seeds (apomixis), while others reproduce sexually, provide an opportunity to examine effects of reproductive interference in limiting coexistence. Apomictic populations experience little or no reproductive interference, because apomictic ovules cannot receive pollen from nearby sexuals. Oppositely, apomicts produce some viable pollen and can exert reproductive interference on sexuals by siring hybrids. In the Crepis agamic complex, sexuals co‐occur less often with other members of the complex, but apomicts appear to freely co‐occur with one another. We identified a mixed population and conducted a crossing experiment between sexual diploid C. atribarba and apomictic polyploid C. barbigera using pollen from sexual diploids and apomictic polyploids. Seed set was high for all treatments, and as predicted, diploid–diploid crosses produced all diploid offspring. Diploid–polyploid crosses, however, produced mainly polyploidy offspring, suggesting that non‐diploid hybrids can be formed when the two taxa meet. Furthermore, a small proportion of seeds produced in open‐pollinated flowers was also polyploid, indicating that polyploid hybrids are produced under natural conditions. Our results provide evidence for asymmetric reproductive interference, with pollen from polyploid apomicts contributing to reduce the recruitment of sexual diploids in subsequent generations. Existing models suggest that these mixed sexual–asexual populations are likely to be transient, eventually leading to eradication of sexual individuals from the population.  相似文献   

19.
BACKGROUND AND AIMS: Gametophytic apomixis is regularly associated with polyploidy. It has been hypothesized that apomixis is not present in diploid plants because of a pleiotropic lethal effect associated with monoploid gametes. Rare apomictic triploid plants for Paspalum notatum and P. simplex, which usually have sexual diploid and apomictic tetraploid races, were acquired. These triploids normally produce male gametes through meiosis with a range of chromosome numbers from monoploid (n = 10) to diploid (n = 20). The patterns of apomixis transmission in Paspalum were investigated in relation to the ploidy levels of gametes. METHODS: Intraspecific crosses were made between sexual diploid, triploid and tetraploid plants as female parents and apomictic triploid plants as male parents. Apomictic progeny were identified by using molecular markers completely linked to apomixis and the analysis of mature embryo sacs. The chromosome number of the male gamete was inferred from chromosome counts of each progeny. KEY RESULTS: The chromosome numbers of the progeny indicated that the chromosome input of male gametes depended on the chromosome number of the female gamete. The apomictic trait was not transmitted through monoploid gametes, at least when the progeny was diploid. Diploid or near-diploid gametes transmitted apomixis at very low rates. CONCLUSIONS: Since male monoploid gametes usually failed to form polyploid progenies, for example triploids after 4x x 3x crosses, it was not possible to determine whether apomixis could segregate in polyploid progenies by means of monoploid gametes.  相似文献   

20.
Modes of evolution of species classified within different sections inTaraxacum involve diverse processes, viz. primary divergence of an ancestral sexual diploid, hybridization between a tetraploid apomict and a diploid sexual hybrid, differentiation of an advanced apomictic taxon at one ploidy level, hybridization between a sexual tetraploid and a sexual diploid, formation of a polyploid series from an apomictic ancestor of a lower polyploidy level, and remote hybridization between an autumn-flowering ancestral diploid and a spring-flowering derivative diploid or apomict. Various reproduction systems of the plants involved, different environments and different timing of the processes contribute to a very varied nature of the species groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号