首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Across several animal taxa, the evolution of sociality involves a suite of characteristics, a “social syndrome,” that includes cooperative breeding, reproductive skew, primary female‐biased sex ratio, and the transition from outcrossing to inbreeding mating system, factors that are expected to reduce effective population size (Ne). This social syndrome may be favoured by short‐term benefits but come with long‐term costs, because the reduction in Ne amplifies loss of genetic diversity by genetic drift, ultimately restricting the potential of populations to respond to environmental change. To investigate the consequences of this social life form on genetic diversity, we used a comparative RAD‐sequencing approach to estimate genomewide diversity in spider species that differ in level of sociality, reproductive skew and mating system. We analysed multiple populations of three independent sister‐species pairs of social inbreeding and subsocial outcrossing Stegodyphus spiders, and a subsocial outgroup. Heterozygosity and within‐population diversity were sixfold to 10‐fold lower in social compared to subsocial species, and demographic modelling revealed a tenfold reduction in Ne of social populations. Species‐wide genetic diversity depends on population divergence and the viability of genetic lineages. Population genomic patterns were consistent with high lineage turnover, which homogenizes the genetic structure that builds up between inbreeding populations, ultimately depleting genetic diversity at the species level. Indeed, species‐wide genetic diversity of social species was 5–8 times lower than that of subsocial species. The repeated evolution of species with this social syndrome is associated with severe loss of genomewide diversity, likely to limit their evolutionary potential.  相似文献   

2.
Cooperation and group living are extremely rare in spiders and only few species are known to be permanently social. Inbreeding is a key characteristic of social spiders, resulting in high degrees of within‐colony relatedness that may foster kin‐selected benefits of cooperation. Accordingly, philopatry and regular inbreeding are suggested to play a major role in the repeated independent origins of sociality in spiders. We conducted field observations and laboratory experiments to investigate the mating system of the subsocial spider Stegodyphus tentoriicola. The species is suggested to resemble the ‘missing link’ in the transition from subsociality to permanent sociality in Stegodyphus spiders because its social period is prolonged in comparison to other subsocial species. Individuals in our two study populations were spatially clustered around maternal nests, indicating that clusters consist of family groups as found in the subsocial congener Stegodyphus lineatus. Male mating dispersal was limited and we found no obvious pre‐copulatory inbreeding avoidance, suggesting a high likelihood of mating with close kin. Rates of polygamy were low, a pattern ensuring high relatedness within broods. In combination with ecological constraints, such as high costs of dispersal, our findings are consistent with the hypothesis that the extended social period in S. tentoriicola is accompanied with adaptations that facilitate the transition towards permanent sociality. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 851–859.  相似文献   

3.
The social spiders are unusual among cooperatively breeding animals in being highly inbred. In contrast, most other social organisms are outbred owing to inbreeding avoidance mechanisms. The social spiders appear to originate from solitary subsocial ancestors, implying a transition from outbreeding to inbreeding mating systems. Such a transition may be constrained by inbreeding avoidance tactics or fitness loss due to inbreeding depression. We examined whether the mating system of a subsocial spider, in a genus with three social congeners, is likely to facilitate or hinder the transition to inbreeding social systems. Populations of subsocial Stegodyphus lineatus are substructured and spiders occur in patches, which may consist of kin groups. We investigated whether male mating dispersal prevents matings within kin groups in natural populations. Approximately half of the marked males that were recovered made short moves (< 5m) and mated within their natal patch. This potential for inbreeding was counterbalanced by a relatively high proportion of immigrant males. In mating experiments, we tested whether inbreeding actually results in lower offspring fitness. Two levels of inbreeding were tested: full sibling versus non-sib matings and matings of individuals within and between naturally occurring patches of spiders. Neither full siblings nor patch mates were discriminated against as mates. Sibling matings had no effect on direct fitness traits such as fecundity, hatching success, time to hatching and survival of the offspring, but negatively affected offspring growth rates and adult body size of both males and females. Neither direct nor indirect fitness measures differed significantly between within patch and between-patch pairs. We tested the relatedness between patch mates and nonpatch mates using DNA fingerprinting (TE-AFLP). Kinship explained 30% of the genetic variation among patches, confirming that patches are often composed of kin. Overall, we found limited male dispersal, lack of kin discrimination, and tolerance to low levels of inbreeding. These results suggest a history of inbreeding which may reduce the frequency of deleterious recessive alleles in the population and promote the evolution of inbreeding tolerance. It is likely that the lack of inbreeding avoidance in subsocial predecessors has facilitated the transition to regular inbreeding social systems.  相似文献   

4.
Social spiders are unusual among social organisms in being highly inbred-males and females mature within their natal nest and mate with each other to produce successive generations. Several lines of evidence suggest that in spiders inbred social species originated from outbred subsocial ancestors, a transition expected to have been hindered by inbreeding depression. As a window into this transition, we examined the fitness consequences of artificially imposed inbreeding in the naturally outbred subsocial spider Anelosimus cf. jucundus. Subsocial spiders alternate periods of solitary and social living and are thought to resemble the ancestral system from which the inbred social species originated. We found that inbreeding depression in this subsocial spider only becomes evident in spiders raised individually following the end of their social phase and that ecological and demographic factors such as eclosion date, number of siblings in the group and mother's persistence are more powerful determinants of fitness during the social phase. A potential explanation for this pattern is that maternal care and group living provide a buffer against inbreeding depression, a possibility that may help explain the repeated origin of inbred social systems in spiders and shed light on the origin of other systems involving regular inbreeding.  相似文献   

5.
《Genomics》2020,112(2):1319-1329
NKX-2.5 gene is responsible for cardiac development and its targeted disruption apprehends cardiac development at the linear heart tube stage. Bioinformatic analysis was employed to investigate the codon usage pattern and dN/dS of mammalian NKX-2.5 gene. The relative synonymous codon usage analysis revealed variation in codon usage and two synonymous codons namely ATA (Ile) and GTA (Val) were absent in NKX-2.5 gene across selected mammalian species suggesting that these two codons were possibly selected against during evolution. Parity rule 2 analysis of two and four fold amino acids showed CT bias whereas six-fold amino acids revealed GA bias. Neutrality analysis suggests that selection played a prominent role while mutation had a minor role. The dN/dS analysis suggests synonymous substitution played a significant role and it negatively correlated with p-distance of the gene. Purifying natural selection played a dominant role in the genetic evolution of NKX-2.5 gene in mammals.  相似文献   

6.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

7.
Cutter AD  Wasmuth JD  Washington NL 《Genetics》2008,178(4):2093-2104
The evolution of self-fertilization can mediate pronounced changes in genomes as a by-product of a drastic reduction in effective population size and the concomitant accumulation of slightly deleterious mutations by genetic drift. In the nematode genus Caenorhabditis, a highly selfing lifestyle has evolved twice independently, thus permitting an opportunity to test for the effects of mode of reproduction on patterns of molecular evolution on a genomic scale. Here we contrast rates of nucleotide substitution and codon usage bias among thousands of orthologous groups of genes in six species of Caenorhabditis, including the classic model organism Caenorhabditis elegans. Despite evidence that weak selection on synonymous codon usage is pervasive in the history of all species in this genus, we find little difference among species in the patterns of codon usage bias and in replacement-site substitution. Applying a model of relaxed selection on codon usage to the C. elegans and C. briggsae lineages suggests that self-fertilization is unlikely to have evolved more than approximately 4 million years ago, which is less than a quarter of the time since they shared a common ancestor with outcrossing species. We conclude that the profound changes in mating behavior, physiology, and developmental mechanisms that accompanied the transition from an obligately outcrossing to a primarily selfing mode of reproduction evolved in the not-too-distant past.  相似文献   

8.

Background  

Cooperative hunting and foraging in spiders is rare and prone to cheating such that the actions of selfish individuals negatively affect the whole group. The resulting social dilemma may be mitigated by kin selection since related individuals lose indirect fitness benefits by acting selfishly. Indeed, cooperation with genetic kin reduces the disadvantages of within-group competition in the subsocial spider Stegodyphus lineatus, supporting the hypothesis that high relatedness is an important pre-adaptation in the transition to sociality in spiders. In this study we examined the consequences of group size and relatedness on cooperative feeding in the subsocial spider S. tentoriicola, a species suggested to be at the transition to permanent sociality.  相似文献   

9.
The consequences of population subdivision and inbreeding have been studied in many organisms, particularly in plants. However, most studies focus on the short‐term consequences, such as inbreeding depression. To investigate the consequences of both population fragmentation and inbreeding for genetic variability in the longer term, we here make use of a natural inbreeding experiment in spiders, where sociality and accompanying population subdivision and inbreeding have evolved repeatedly. We use mitochondrial and nuclear data to infer phylogenetic relationships among 170 individuals of Anelosimus spiders representing 23 species. We then compare relative mitochondrial and nuclear genetic variability of the inbred social species and their outbred relatives. We focus on four independently derived social species and four subsocial species, including two outbred–inbred sister species pairs. We find that social species have 50% reduced mitochondrial sequence divergence. As inbreeding is not expected to reduce genetic variability in the maternally inherited mitochondrial genome, this suggests the loss of variation due to strong population subdivision, founder effects, small effective population sizes (colonies as individuals) and lineage turnover. Social species have < 10% of the nuclear genetic variability of the outbred species, also suggesting the loss of genetic variability through founder effects and/or inbreeding. Inbred sociality hence may result in reduction in variability through various processes. Sociality in most Anelosimus species probably arose relatively recently (0.1–2 mya), with even the oldest social lineages having failed to diversify. This is consistent with the hypothesis that inbred spider sociality represents an evolutionary dead end. Heterosis underlies a species potential to respond to environmental change and/or disease. Inbreeding and loss of genetic variability may thus limit diversification in social Anelosimus lineages and similarly pose a threat to many wild populations subject to habitat fragmentation or reduced population sizes.  相似文献   

10.
ABSTRACT: BACKGROUND: Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. RESULTS: We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). CONCLUSIONS: Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection.  相似文献   

11.
Social, cooperative breeding behaviour is rare in spiders and generally characterized by inbreeding, skewed sex ratios and high rates of colony turnover, processes that when combined may reduce genetic variation and lower individual fitness quickly. On these grounds, social spider species have been suggested to be unstable in evolutionary time, and hence sociality a rare phenomenon in spiders. Based on a partial molecular phylogeny of the genus Stegodyphus, we address the hypothesis that social spiders in this genus are evolutionary transient. We estimate the age of the three social species, test whether they represent an ancestral or derived state and assess diversification relative to subsocial congeners. Intraspecific sequence divergence was high in all of the social species, lending no support for the idea that they are young, transient species. The age of the social lineages, constant lineage branching and the likelihood that social species are independently derived suggest that either the social species are 'caught in sociality' or they have evolved into cryptic species.  相似文献   

12.
We present a likelihood method for estimating codon usage bias parameters along the lineages of a phylogeny. The method is an extension of the classical codon-based models used for estimating dN/dS ratios along the lineages of a phylogeny. However, we add one extra parameter for each lineage: the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D. melanogaster lineage has experienced a reduction in the selection for optimal codon usage. However, the D. melanogaster lineage has also experienced a change in the biological mutation rates relative to D. simulans, in particular, a relative reduction in the mutation rate from A to G and an increase in the mutation rate from C to T. However, neither a reduction in the strength of selection nor a change in the mutational pattern can alone explain all of the data observed in the D. melanogaster lineage. For example, we also confirm previous results showing that the Notch locus has experienced positive selection for previously classified unpreferred mutations.  相似文献   

13.
Interdemic selection, inbreeding and highly structured populations have been invoked to explain the evolution of cooperative social behaviour in the otherwise solitary and cannibalistic spiders. The family Eresidae consists of species ranging from solitary and intermediate subsocial to species exhibiting fully cooperative social behaviour. In this study we, in a hierarchical analysis, investigated relatedness of putative family clusters, inbreeding and population genetic structure of the subsocial spider Eresus cinnaberinus. Five hierarchical levels of investigation ranging from large scale genetic structure (distances of 250 and 50 km level 1 and 2) over microgeographic structure (20 km2 and 4 km2, level 3 and 4) to a single hill transect of 200 m (level 5) were performed. The purpose of level 5 was two-fold: (1) to investigate the relatedness of putative family groups, and (2) to evaluate the influence of both family living and sampling design on higher level estimates. Relatedness estimates of putative family groups showed an average relatedness of R=0.26. There was no indication of inbreeding. In contrast to social spiders, genetic variation was abundant, He?0.10. The population genetic structure was intermediate between social and asocial spiders. Genetic variance increased continually across hierarchical levels. Family structured neighbourhoods biased differentiation estimates among level 5 samples (FST? 0.04) and level 3 and 4 samples (0.07ST<0.18), and apparent inbreeding among level 3 and 4 samples, FIS>0, was caused by disjunct sampling from separate neighbourhoods. Larger scale samples were highly differentiated 0.12ST<0.26, depending on level and sampling design. Due to a distance effect family living did not influence estimates of the higher level 1. Although the dispersing sex among social spiders and the subsocial E. cinnebarinus differ, females versus males, female behaviour of both sociality classes lead to high genetic variance.  相似文献   

14.
15.
Ants live in crowded nests with interacting individuals, which makes them particularly prone to infectious diseases. The question is, how do ants cope with the increased risk of pathogen transmission due to sociality? We have studied the molecular evolution of defensin, a gene encoding an antimicrobial protein, in ants. Defensin sequences from several ant species were analyzed with maximum likelihood models of codon substitution to infer selection. Positive selection was detected in the mature region of defensin, whereas the signal and pro regions seem to be evolving neutrally. We also found a significantly higher rate of nonsynonymous substitutions in some phylogenetic lineages, as well as dN/dS >1, suggesting varying selection pressures in different lineages. Earlier studies on the molecular evolution of insect antimicrobial peptide genes have focused on termites and dipteran species, and detected positive selection only in duplicated termicin genes in termites. These findings, together with our present results, provide an indication that the immune systems of social insects (ants and termites) and dipteran insects may have responded differently to the selection pressure caused by microbial pathogens.  相似文献   

16.
We estimated synonymous (dN) and nonsynonymous (dS) substitution rates for protein-coding genes of the mitochondrial genome from two individuals each of the species human, chimpanzee, and gorilla. The genes were analyzed both separately and in a combined data set. Pairwise sequence comparisons suggest that the dN/dS rate ratios are about 5-10 times higher in within-species comparisons than in between-species comparisons. This result is confirmed by a more rigorous likelihood ratio test, which rejected the null hypothesis that the dN/dS rate ratios are identical within and between species. The likelihood models account for the genetic code structure, transition/transversion rate ratio, and codon usage bias and are expected to produce more reliable results than the commonly used contingency test. Separate analyses of different genes show that the dN/dS rate ratios are higher within species than between species for all 13 mitochondrial genes, with the difference being statistically significant for all except three small or slowly evolving genes. Furthermore, in conserved genes, nonsynonymous rates within species tend to be higher than the between-species rates by a greater proportion than in fast-changing genes. Our findings confirm and extend earlier results obtained from smaller data sets and suggest the operation of slightly deleterious mutations throughout the mitochondrial genome in the hominoids. Implications of the results for evolutionary studies and, in particular, for studies of the origin of modern humans, are discussed.  相似文献   

17.
1. Social species in the spider genus Anelosimus predominate in lowland tropical rainforests, while congeneric subsocial species occur at higher elevations or higher latitudes. 2. We conducted a comparative study to determine whether differences in total biomass, insect size or both have been responsible for this pattern. 3. We found that larger average insect size, rather than greater overall biomass per se, is a key characteristic of lowland tropical habitats correlating with greater sociality. 4. Social species occupied environments with insects several times larger than the spiders, while subsocial species nearing dispersal occupied environments with smaller insects in either high or low overall biomass. 5. Similarly, in subsocial spider colonies, individuals lived communally at a time when they were younger and therefore smaller than the average insect landing on their webs. 6. We thus suggest that the availability of large insects may be a critical factor restricting social species to their lowland tropical habitats.  相似文献   

18.
Multivariate analysis of codon and amino acid usage was performed for three Leishmania species, including L. donovani, L. infantum and L. major. It was revealed that all three species are under mutational bias and translational selection. Lower GC 12 and higher GC 3S in all three parasites suggests that the ancestral highly expressed genes (HEGs), compared to lowly expressed genes (LEGs), might have been rich in AT-content. This also suggests that there must have been a faster rate of evolution under GC-bias in LEGs. It was observed from the estimation of synonymous/non-synonymous substitutions in HEGs that the HEG dataset of L. donovani is much closer to L. major evolutionarily. This is also supported by the higher d N value as compared to d S between L. donovani and L. major, suggesting the conservation of synonymous codon positions between these two species and the role of translational selection in shaping the composition of protein-coding genes.  相似文献   

19.
BACKGROUND AND AIMS: Inbreeding depression is thought to play a central role in the evolution and maintenance of cross-fertilization. Theory indicates that inbreeding depression can be purged with self-fertilization, resulting in positive feedback for the selection of selfing. Variation among populations of Leptosiphon jepsonii in the timing and rate of self-fertilization provides an opportunity to study the evolution of inbreeding depression and mating systems. In addition, the hypothesis that differences in inbreeding depression for male and female fitness can stabilize mixed mating in L. jepsonii is tested. METHODS: In a growth room experiment, inbreeding depression was measured in three populations with mean outcrossing rates ranging from 0.06 to 0.69. The performance of selfed and outcrossed progeny is compared at five life history stages. To distinguish between self-incompatibility and early inbreeding depression, aborted seeds and unfertilized ovules were counted in selfed and outcrossed fruits. In one population, pollen and ovule production was quantified to estimate inbreeding depression for male and female fitness. KEY RESULTS: Both prezygotic barriers and inbreeding depression limited self seed set in the most outcrossing population. Cumulative inbreeding depression ranged from 0.297 to 0.501, with the lowest value found in the most selfing population. Significant inbreeding depression for early life stages was found only in the more outcrossing populations. Inbreeding depression was not significant for pollen or ovule production. CONCLUSIONS: The results provide modest support for the hypothesized relationship between inbreeding depression and mating systems. The absence of early inbreeding depression in the more selfing populations is consistent with theory on purging. Differences in male and female expression of inbreeding depression do not appear to stabilize mixed mating in L. jepsonii. The current estimates of inbreeding depression for L. jepsonii differ from those of previous studies, underscoring the effects of environmental variation on its expression.  相似文献   

20.
Mutations that alter the morphology of floral displays (e.g., flower size) or plant development can change multiple functions simultaneously, such as pollen export and selfing rate. Given the effect of these various traits on fitness, pleiotropy may alter the evolution of both mating systems and floral displays, two characters with high diversity among angiosperms. The influence of viability selection on mating system evolution has not been studied theoretically. We model plant mating system evolution when a single locus simultaneously affects the selfing rate, pollen export, and viability. We assume frequency-independent mating, so our model characterizes prior selfing. Pleiotropy between increased viability and selfing rate reduces opportunities for the evolution of pure outcrossing, can favor complete selfing despite high inbreeding depression, and notably, can cause the evolution of mixed mating despite very high inbreeding depression. These results highlight the importance of pleiotropy for mating system evolution and suggest that selection by nonpollinating agents may help explain mixed mating, particularly in species with very high inbreeding depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号