首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

2.
3.
Drought effects on seedling survival in a tropical moist forest   总被引:2,自引:0,他引:2  
The amount and seasonality of rainfall varies strongly in the tropics, and plant species abundance, distribution and diversity are correlated with rainfall. Drought periods leading to plant stress occur not only in dry forests, but also in moist and even wet forests. We quantified experimentally the effect of drought on survival of first year seedlings of 28 co-occurring tropical woody plant species in the understory of a tropical moist forest. The seedlings were transplanted to plots and subjected to a drought and an irrigation treatment for 22 weeks during the dry season. Drought effects on mortality and wilting behavior varied greatly among species, so that relative survival in the dry treatment ranged from 0% to about 100% of that in the irrigated treatment. Drought stress was the main factor in mortality, causing about 90% (median) of the total mortality observed in the dry treatment. In almost half of the species, the difference in survival between treatments was not significant even after 22 weeks, implying that many of the species are well adapted to drought in this forest. Relative drought survival was significantly higher in species associated with dry habitats than in those associated with wet habitats, and in species with higher abundance on the dry side of the Isthmus of Panama, than in those more abundant on the wet side. These data show that differential species survival in response to drought, combined with variation in soil moisture availability, may be important for species distribution at the local and regional scale in many tropical forests.  相似文献   

4.
Successful forest expansion into grassland can be limited by seed dispersal and adverse conditions for tree seedlings in the grassland environment. In the high‐elevation Andes, human‐induced fragmentation has exacerbated the patchy distribution of Polylepis forests, threatening their unique biological communities and spurring restoration interest. Studies of Polylepis forest extent in Peru suggest that forest borders have remained stable over the past century despite decreasing anthropogenic disturbance, suggesting that tree seedling recruitment is being limited in the open grassland habitat. We studied natural seedling dispersion patterns of Polylepis sericea and Polylepis weberbaueri (Rosaceae) at forest–grassland edges across a range of environmental conditions to examine seedling recruitment and colonization of grasslands in Huascaran National Park (Peru). Using data from 2367 seedlings found in 48 forest–grassland edge plots (15 m × 15 m) at forest patches between 3900–4500 masl, we employed generalized mixed modelling to identify the significant associations of seedling densities with environmental covariates. In addition, we compared these associations to patterns of adult presence on the landscape. Seedling densities were associated with a combination of variables varying within (distance to forest edge) and among (elevation and dry season solar irradiation) plots across the landscape. For both species, seedling densities decreased with increasing distance away from the forest in a manner consistent with short‐distance seed dispersal by wind. Our results suggest that such short‐distance dispersal may slow forest expansion, but that there also appear to be substantial post‐dispersal limitations to seedling establishment in the grassland. Polylepis sericea densities decreased with elevation, while P. weberbaueri increased with elevation and decreased with solar irradiation. Associations of adult presence with elevation and solar irradiation mirrored those of seedling densities. Management of areas with forest patches dominated by these species should consider these differences in their environmental tolerances, particularly during species selection and zonation for reforestation.  相似文献   

5.
For niche differences to maintain coexistence of sympatric species, each species must grow and/or survive better than each of the others in at least one set of conditions (i.e., performance trade‐offs). However, the extent of niche differentiation in tropical forests remains highly debated. We present the first test of performance trade‐offs for wild seedlings in a tropical forest. We measured seedling relative growth rate (RGR) and survival of four common native woody species across 18 light, substrate, and topography microhabitats over 2.5 years within Hawaiian montane wet forest, an ideal location due to its low species diversity and strong species habitat associations. All six species pairs exhibited significant performance trade‐offs across microhabitats and for RGR versus survival within microhabitats. We also found some evidence of performance equivalence, with species pairs having similar performance in 26% of comparisons across microhabitats. Across species, survival under low light was generally positively associated with RGR under high light. When averaged over all species, topography (slope, aspect, and elevation) explained most of the variation in RGR attributable to microhabitat variables (51–53%) followed by substrate type (35–37%) and light (11–12%). However, the relative effects of microhabitat differed among species and RGR metric (i.e., RGR for height, biomass, or leaf area). These findings indicate that performance trade‐offs among species during regeneration are common in low‐diversity tropical forest, although other mechanisms may better explain the coexistence of species with small performance differences.  相似文献   

6.
Alternative stable state theory has been applied to understanding the control by landscape fire activity of pyrophobic tropical rain forest and pyrophytic eucalypt savanna boundaries, which are often separated by tall eucalypt forests. We evaluate the microclimate of three vegetation types across an elevational gradient and their relative fire risk as measured by McArthur's Forest Fire Danger Index (FFDI). Microclimatic data were collected from rain forest, tall eucalypt forest and savanna sites on eight vegetation boundaries throughout the humid tropics in north Queensland over a 3‐year period and were compared with data from a nearby meteorological station. There was a clear annual pattern in daily FFDI with highest values in the austral winter dry season and lowest values in the austral summer wet season. There was a strong association of the meteorological station FFDI values with those from the three vegetation types, albeit they were substantially lower. The rank order of FFDI values among the vegetation types decreased from savanna, tall eucalypt forest, then rain forest, a pattern that was consistent across each transect. Only very rarely would rain forest be flammable, despite being adjacent to highly flammable savannas. These results demonstrate the very strong effect of vegetation type on microclimate and fire risk, compared with the weak effect of elevation, consistent with a fire–vegetation feedback. This study is the first demonstration of how vegetation type influences microclimate and fire risk across a topographically complex tropical forest–savanna gradient.  相似文献   

7.
Increasing evidence is available for a positive effect of biodiversity on ecosystem productivity and standing biomass, also in highly diverse systems as tropical forests. Biodiversity conservation could therefore be a critical aspect of climate mitigation policies. There is, however, limited understanding of the role of individual species for this relationship, which could aid in focusing conservation efforts and forest management planning. This study characterizes the functional specialization and redundancy for 95% of all tree species (basal area weighted percentage) in a diverse tropical forest in the central Congo Basin and relates this to species' abundance, contribution to aboveground carbon, and maximum size. Functional characterization is based on a set of traits related to resource acquisition (wood density, specific leaf area, leaf carbon, nitrogen and phosphorus content, and leaf stable carbon isotope composition). We show that within both mixed and monodominant tropical forest ecosystems, the highest functional specialization and lowest functional redundancy are solely found in rare tree species and significantly more in rare species holding large‐sized individuals. Rare species cover the entire range of low and high functional redundancy, contributing both unique and redundant functions. Loss of species supporting functional redundancy could be buffered by other species in the community, including more abundant species. This is not the case for species supporting high functional specialization and low functional redundancy, which would need specific conservation attention. In terms of tropical forest management planning, we argue that specific conservation of large‐sized trees is imperative for long‐term maintenance of ecosystem functioning.  相似文献   

8.
A grass–fire cycle in Australian tropical savannas has been postulated as driving the regional decline of the obligate-seeding conifer Callitris intratropica and other fire-sensitive components of the regional flora and fauna, due to proliferation of flammable native grasses. We tested the hypothesis that a high-biomass invasive savanna grass drives a positive feedback process where intense fires destroy fire-sensitive trees, and the reduction in canopy cover facilitates further invasion by grass. We undertook an observational and experimental study using, as a model system, a plantation of C. intratropica that has been invaded by an African grass, gamba (Andropogon gayanus) in the Northern Territory, Australia. We found that high grass biomass was associated with reduced canopy cover and restriction of foliage to the upper canopy of surviving stems, and mortality of adult trees was very high (>50%) even in areas with low fuel loads (1 t·ha−1). Experimental fires, with fuel loads >10 t·ha−1, typical of the grass-invasion front, caused significant mortality due to complete crown scorch. Lower fuel loads cause reduced canopy cover through defoliation of the lower canopy. These results help explain how increases in grass biomass are coupled with the decline of C. intratropica throughout northern Australia by causing a switch from litter and sparse perennial grass fuels, and hence low-intensity surface fires, to heavy annual grass fuel loads that sustain fires that burn into the midstorey. This study demonstrates that changes in fuel type can alter fire regimes with substantial knock-on effects on the biota.  相似文献   

9.
10.
Hoffmann WA  Orthen B  Franco AC 《Oecologia》2004,140(2):252-260
Tropical savannas and closed forests are characterized by distinct tree communities, with most species occurring almost exclusively in only one of the two environments. The ecology of these two groups of species will largely determine the structure and dynamics of the savanna-forest boundary, but little is known about the ecological and physiological differences that might control their distributions. We performed field and nursery experiments to compare seedling establishment success, predawn leaf water potential, biomass allocation, and root carbohydrate concentration of congeneric species, each composed of one savanna species and one forest species. Seedling establishment of savanna and forest species responded differently to vegetation cover, with forest species having lowest establishment success in the open savanna and savanna species having lowest success in forest. Subsequent survival followed similar patterns, resulting in even greater differences in cumulative success. The low survival of forest species in the savanna appears related to drought stress, as seedlings of forest species had lower predawn leaf water potential than savanna species. Seedlings of savanna species had greater root: shoot ratios and root total nonstructural carbohydrate (TNC) concentration, particularly among evergreen genera. Among evergreen genera, root TNC per shoot mass, which may largely determine resprout capacity, was seven times higher in savanna species than forest species. Although water availability and microclimate may reduce the success of forest species, these factors appear unable to completely exclude forest seedling establishment in savanna. Fire, on the other hand, appears to be a much more absolute constraint to success of forest species in savanna.  相似文献   

11.
Questions: Has fire suppression relaxed barriers to the exchange of species between savanna and forest? Do all species or a subset of species participate in this exchange? Would current vegetation structure persist if fire suppression were to cease? Location: A gallery forest edge in the Cerrado region of central Brazil that burned only once in the past 35 years. Methods: Density of tree seedlings, saplings and adults, leaf area index (LAI), tree basal area and diameter were surveyed in 12, 10 m × 70 m transects centred on and perpendicular to the forest–savanna boundary. Community composition was assessed using non‐metric multi‐dimensional scaling (NMDS). Results: Basal area and LAI declined substantially from forest to savanna, with an associated shift in species composition. Savanna tree species were nearly absent in the forest, but accounted for the majority of stems in the savanna. In contrast, forest species comprised 14% of adults and more than one‐third of juveniles in the savanna. Despite the high diversity of trees (85 species) in the forest, five species play a particularly large role in this initial phase of forest expansion. Reintroduction of fire, however, would result in widespread topkill of juveniles and the majority of adult forest trees, thereby interrupting the succession towards forest. Conclusions: After 35 years during which the site burned only once, the savanna still remains dominated by savanna species. Nevertheless, the dominance of forest juveniles in border and savanna tree communities suggests that with a continued policy of fire suppression, the forest will continue to expand.  相似文献   

12.
13.
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

14.
15.
The ecological differences between ‘shrubs’ and ‘trees’ are surprisingly poorly understood and clear ecological definitions of these two constructs do not exist. It is not clear whether a shrub is simply a small tree or whether shrubs represent a distinct life‐history strategy. This question is of special interest in African savannas, where shrubs and trees often co‐dominate, but are often treated uniformly as ‘woody plants’ even though the tree to shrub ratio is an important determinant of ecosystem functioning. In this study we use data from a long‐term fire experiment, together with a trait‐based approach to test (i) if woody species usually classified as shrubs or trees in African savanna differ in key traits related to disturbance and resource use; and (ii) if these differences justify the interpretation of the two growth forms as distinct life‐history strategies. We measured for 22 of the most common woody plant species of a South African savanna 27 plant traits related to plant architecture, life‐history, leaf characteristics, photosynthesis and resprouting capacity. Furthermore we evaluated their performance during a long‐term fire experiment. We found that woody plants authors call (i) shrubs; (ii) shrubs sometimes small trees; and (3) trees responded differently to long‐term fire treatments. We additionally found significant differences in architecture, diameter‐height‐allometry, foliage density, resprouting vigour after fire, minimum fruiting height and foliar δ13C between these three woody plant types. We interpret these findings as evidence for at least two different life‐history‐strategies: an avoidance/adaptation strategy for shrubs (early reproduction + adaptation to minor disturbance) and an escape strategy for trees (promoted investment in height growth + delayed reproduction).  相似文献   

16.
Trait‐response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long‐term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait‐based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long‐term experimental evidence that trait‐based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest.  相似文献   

17.
Trait‐based studies in community ecology have generally focused on the community as a unit where all species occur due to stochasticity, determinism or some mixture of the two. However, the processes governing population dynamics may vary greatly among species. We propose a core‐transient framework for trait‐based community studies where a core group of species has a strong link to the local environment while transient species have weaker responses to the environment. Consistent with the expectations of the framework, we found that common species exhibit clear linkages between performance and their environment and traits while rare species tend to have weaker or non‐significant relationships. Ultimately, trait‐based ecology should move beyond applying a set of processes to a community as a whole and towards quantifying inter‐specific variation in the drivers of population dynamics that ultimately scale up to determine community structure.  相似文献   

18.
Life‐history theory posits that trade‐offs between demographic rates constrain the range of viable life‐history strategies. For coexisting tropical tree species, the best established demographic trade‐off is the growth‐survival trade‐off. However, we know surprisingly little about co‐variation of growth and survival with measures of reproduction. We analysed demographic rates from seed to adult of 282 co‐occurring tropical tree and shrub species, including measures of reproduction and accounting for ontogeny. Besides the well‐established fast–slow continuum, we identified a second major dimension of demographic variation: a trade‐off between recruitment and seedling performance vs. growth and survival of larger individuals (≥ 1 cm dbh) corresponding to a ‘stature–recruitment’ axis. The two demographic dimensions were almost perfectly aligned with two independent trait dimensions (shade tolerance and size). Our results complement recent analyses of plant life‐history variation at the global scale and reveal that demographic trade‐offs along multiple axes act to structure local communities.  相似文献   

19.
Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two‐step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest‐dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed‐canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient‐demanding and mycorrhizal‐dependent, stress‐tolerant disturbance‐sensitive competitors, while corridor specialists are large‐seeded disturbance‐tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment‐related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity‐enhancing landscape structures. The habitat quality of secondary stands can be improved by nurturing a heterogeneous shrub and tree layer, and modest herb layer management.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号