首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents multiplex panels of polymorphic microsatellites for two closely related cryptic species Pipistrellus pipistrellus and Pipistrellus pygmaeus. We tested the cross‐species amplification of 34 microsatellite loci, originally developed for five vespertilionid bat species. Ten and nine polymorphic loci in P. pipistrellus (mean number of alleles per locus = 10.5) and P. pygmaeus (8.1), respectively, in three multiplex polymerase chain reactions per species were amplified. All loci can be analysed in a single fragment analysis and can be used as markers to the study of evolution and the ecology of structured populations of socially living bats.  相似文献   

2.
Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.  相似文献   

3.
Eavesdropping is a widespread strategy to optimize decision‐making. Bats are interesting models for investigating acoustic information transfer, as they possess a broad vocalization repertoire of echolocation and social calls. Yet, the knowledge of the extent to which eavesdropping plays a role in bat communication is scarce. Here, we examined the vocal and spatial activity patterns of three congeneric bat species (Pipistrellus pipistrellus, P. pygmaeus, P. nathusii, hereafter called pipistrelles) during autumn – their migration and mating season. We hypothesized that pipistrelles utilize information of conspecifics and congenerics to localize stopover sites for mating or other information purposes during migration. We found that bats formed small multispecies aggregations on the wing, suggesting interspecific eavesdropping on feeding buzzes and/or courtship calls could occur among these species. Pipistrelles produced similar proportions of feeding buzzes and social calls at aggregation sites. To test whether pipistrelles respond to the courtship vocalizations of conspecifics and congenerics, we conducted a playback experiment with P. pipistrellus where we presented courtship vocalizations of the three pipistrelle species and as a control, a motif of the noctule bat's song (Nyctalus noctula). Pipistrellus pipistrellus decreased the rate of social calls in response to the broadcast of songs of P. nathusii, yet they tended to increase the rate in response to the playback of their own species. We conclude that interspecific eavesdropping occurs at least between P. pipistrellus and P. nathusii and might thus favour the formation of multispecies aggregations. Our findings provide novel insights into the social behaviour and interspecific communication of a bat community during the season of migration and mating.  相似文献   

4.
The present study examines those features which promote bat feeding in agricultural riparian areas and the riparian habitat associations of individual species. Activity of Nathusius’ pipistrelle (Pipistrellus nathusii), common pipistrelle (Pipistrellus pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), Leisler’s bat (Nyctalus leisleri), and Myotis species (Myotis sp.) were recorded, and their habitat associations both “between” and “within” riparian areas were analyzed. General feeding activity was associated with reduced agricultural intensity, riparian hedgerow provision, and habitat diversity. Significant habitat associations for P. pipistrellus were observed only within riparian areas. Myotis species and P. pygmaeus were significantly related to indices of landscape structure and riparian hedgerow across spatial scales. Myotis species were also related to lower levels of riffle flow at both scales of analysis. The importance of these variables changed significantly, however, between analysis scales. The multi-scale investigation of species–habitat associations demonstrated the necessity to consider habitat and landscape characteristics across spatial scales to derive appropriate conservation plans.  相似文献   

5.
Distress calls were recorded from three sympatric species of pipistrelle bat (Pipistrellus nathusii, P. pipistrellus and P. pygmaeus) in England and Northern Ireland. At foraging sites, we conducted playback experiments, consisting of experimental distress call sequences from each species and control sequences of random noise and sound recorded with no bats present. We measured response by simultaneously recording ultrasound during playbacks and counting the echolocation pulses above a predetermined threshold which were then identified to species. All three species responded to each other's calls. The number of recorded echolocation pulses of all species increased eight-fold, on average, during the playback of distress call sequences compared with the playback of ultrasonic noise, and four-fold compared with the playback of silence. In a separate playback experiment, the number of echolocation pulses of P. pygmaeus increased 14-fold during the playback of distress calls of four endemic species of bat from Madagascar (Emballonura atrata, Myotis goudoti, Miniopterus majori and M. manavi) compared with the playback of silence. This increased response might have been caused by the high calling rates of the Malagasy species. Distress calls of P. nathusii, P. pipistrellus and P. pygmaeus were structurally convergent, consisting of a series of downward-sweeping, frequency-modulated elements of short duration and high intensity with a relatively strong harmonic content. Selection may favour convergence in the structure of distress calls among bat species, if attracting heterospecifics increases the chance of repelling predators by mobbing.  相似文献   

6.
Many local scale studies have shown that bats respond to water quality degradation or urbanization in a species‐specific manner. However, few have separated the effects of urbanization versus water quality degradation on bats, in single city or single watershed case studies. Across North Carolina, USA, we used the standardized North American Bat Monitoring Program mobile transect protocol to survey bat activity in 2015 and 2016 at 41 sites. We collected statewide water quality and urban land cover data to disentangle the effects of urbanization and water quality degradation on bats at the landscape scale. We found that statewide, water quality degradation and urbanization were not correlated. We found that bats responded to water quality degradation and urbanization independently at the landscape scale. Eptesicus fuscus and Lasiurus cinereus negatively responded to water quality degradation. Lasiurus borealis and Perimyotis subflavus positively responded to water quality degradation. Lasionycteris noctivagans did not respond to water quality degradation but was more active in more urbanized areas. Tadarida brasiliensis positively responded to urbanization and was less active in areas with degraded water quality. We show that bat–water quality relationships found at the local scale are evident at a landscape scale. We confirm that bats are useful bioindicators for both urbanization and water quality degradation. We suggest that water quality can be used to predict the presence of bat species of conservation concern, such as P. subflavus, in areas where it has not been studied locally.  相似文献   

7.
The Baixo Vouga Lagunar (BVL) landscape, in the Portuguese central-west coast, harbours a mosaic of wetland habitat types, interspersed by intensive and extensive agricultural fields, pastures, production forests and urban areas. In this study, we aimed to determine the species composition and the structure of the bat assemblages of the different habitats that constitute this heterogeneous landscape and to investigate seasonal changes in the patterns of bat diversity and activity across habitats. We acoustically sampled bats across 24 sampling sites representative of the eight main habitat types that shape the landscape—Bocage, forests, maize fields, marshlands, reed beds, rice fields, sea rushes and urban settlements. We compared bat richness, diversity and evenness across habitat types and seasons. We analysed habitat-specific and season-specific overall bat activity, and because habitat selection by bats is known to reflect morphological characters, foraging strategies and echolocation call structures, we also analysed the activity of individual species and of eco-morphological guilds. From 1,544 bat-passes recorded, we identified 12 species. Pipistrellus pygmaeus, Pipistrellus pipistrellus and Eptesicus serotinus/Eptesicus isabellinus were the most frequently recorded. Species composition and activity were similar across habitats, whilst exhibiting strong seasonal dynamics within habitats. Our results suggest that the mosaicism of the landscape provides several opportunities for bats, enabling them to explore different resources in distinct habitat patches. However, it may also reflect a forced exploitation of less optimal habitats and resources by bats, due to the scarcity of opportunities provided by fragmented landscapes.  相似文献   

8.
The east‐coast free‐tailed bat Mormopterus norfolkensis Gray, 1839 is a threatened insectivorous bat that is poorly known and as such conservation management strategies are only broadly prescribed. Insectivorous bats that use human‐modified landscapes are often adapted to foraging in open microhabitats. However, few studies have explored whether open‐adapted bats select landscapes with more of these microhabitat features. We compared three morphologically similar and sympatric, molossid bats (genus Mormopterus) with different conservation status in terms of their association with vegetation, climate, landform and land‐use attributes at landscape and local habitat element scales. We predicted that these species would use similar landscape types, with semi‐cleared and low density urban landscapes used more than forested and heavily cleared landscapes. Additionally, we explored which environmental variables best explained the occurrence of each species by constructing post‐hoc models and habitat suitability maps. Contrary to predictions, we found that the three species varied in their habitat use with no one landscape type used more extensively than other types. Overall, M. norfolkensis was more likely to occur in low‐lying, non‐urban, riparian habitats with little vegetation cover. Mormopterus species 2 occupied similar habitats, but was more tolerant of urban landscapes. In contrast, Mormopterus species 4 occurred more often in cleared than forested landscapes, particularly dry landscapes with little vegetation cover. The extensive use of coastal floodplains by the threatened M. norfolkensis is significant because these habitats are under increasing pressure from human land‐uses and the predicted increase in urbanization is likely to further reduce the amount of suitable habitat.  相似文献   

9.
Distributions of Daubenton's bat (Myotis daubentonii), common pipistrelle, (Pipistrellus pipistrellus), and soprano pipistrelle (Pipistrellus pygmaeus) were investigated along and altitudinal gradient of the Lledr River, Conwy, North Wales, and presence assessed in relation to the water surface condition, presence/absence of bank‐side trees, and elevation. Ultrasound recordings of bats made on timed transects in summer 1999 were used to quantify habitat usage. All species significantly preferred smooth water sections of the river with trees on either one or both banks; P. pygmaeus also preferred smooth water with no trees. Bats avoided rough and cluttered water areas, as rapids may generate high‐frequency echolocation‐interfering noise and cluttered areas present obstacles to flight. In lower river regions, detections of bats reflected the proportion of suitable habitat available. At higher elevations, sufficient habitat was available; however, bats were likely restricted due to other factors such as a less predictable food source. This study emphasizes the importance of riparian habitat, bank‐side trees, and smooth water as foraging habitat for bats in marginal upland areas until a certain elevation, beyond which bats in these areas likely cease to forage. These small‐scale altitudinal differences in habitat selection should be factored in when designing future bat distribution studies and taken into consideration by conservation planners when reviewing habitat requirements of these species in Welsh river valleys, and elsewhere within the United Kingdom.  相似文献   

10.
As light pollution is currently considered to be a major threat to biodiversity, different lighting management options are being explored to mitigate the impact of artificial lighting on wildlife. Although part‐night lighting schemes have been adopted by many local authorities across Europe to reduce the carbon footprint and save energy, their effects on biodiversity are unknown. Through a paired, in situ experiment, we compared the activity levels of 8 bat species under unlit, part‐night, and full‐night lighting treatments in a rural area located 60 km south of Paris, France. We selected 36 study locations composed of 1 lit site and a paired unlit control site; 24 of these sites were located in areas subject to part‐night lighting schemes, and 12 sites were in areas under standard, full‐night lighting. There was significantly more activity on part‐night lighting sites compared to full‐night lighting sites for the late‐emerging, light‐sensitive Plecotus spp., and a similar pattern was observable for Myotis spp., although not significant. In contrast, part‐night lighting did not influence the activity of early emerging bat species around streetlights, except for Pipistrellus pipistrellus for which there was significantly less activity on part‐night lighting sites than on full‐night lighting sites. Overall, no significant difference in activity between part‐ and full‐night lighting sites were observed in 5 of the 8 species studied, suggesting that current part‐night lighting schemes fail to encompass the range of activity of most bat species. We recommend that such schemes start earlier at night to effectively mitigate the adverse effects of artificial lighting on light‐sensitive species, particularly along ecological corridors that are especially important to the persistence of biodiversity in urban landscapes.  相似文献   

11.
Bats are known to use aquatic habitats as foraging habitats. Agricultural intensification is perceived to be a main reason for the loss of wetlands. However, artificial wetland creation (i.e. the construction of retention-ponds) in the agricultural landscape aiming at water or nutrient retention has recently gained importance. We evaluated to what extent bats use these artificial wetlands as foraging habitats in an agricultural landscape.Bat activity and prey density were compared in matched pairs at retention-ponds and neighbouring vineyard sites using stationary bat-detectors and sticky-traps, respectively. To examine if bat activity is related to the number of bat individuals, a thermal infrared imaging camera was used. Pipistrellus pipistrellus, the dominant species, served as an example to assess habitat selection between retention-ponds and vineyards. This was performed by relating foraging activity to the available area available within the potential home-range.Total bat activity and nocturnal prey density were significantly higher above the retention-ponds than above vineyards. High differences of activity levels between the ponds and the respective vineyard sites were found for Pipistrellus spp. (P. pipistrellus and P. nathusii) and Myotis spp. (M. daubentonii and M. mystacinus), being about 180 times and 50 times higher above the retention-ponds, respectively. A significant correlation was found between recorded bat activity and the maximum number of bat individuals observed with a thermal infrared imaging camera. When relating foraging activity to habitat availability within the assumed home-range of P. pipistrellus, retention-ponds had on average a higher importance as a foraging habitat than the complete vineyard area although they covered less than 0.1% of its area.This study indicates that artificial wetlands such as retention-ponds provide foraging habitats for bats. Therefore, creation of wetlands in intensively used agricultural landscapes benefits bats.  相似文献   

12.

Aim

The biodiversity value of scattered trees in modified landscapes is often overlooked in planning and conservation decisions. We conducted a multitaxa study to determine how wildlife abundance, species richness and community composition at individual trees are affected by (1) the landscape context in which trees are located; and (2) the size of trees.

Location

Canberra, south‐eastern Australia.

Methods

Trunk arthropod, bat and bird surveys were undertaken over 3 years (2012–2014) at 72 trees of three sizes (small (20–50 cm DBH), medium (51–80 cm), large (≥80 cm)) located in four landscape contexts (reserves, pasture, urban parklands, urban built‐up areas).

Results

Landscape context affected all taxa surveyed. Trunk arthropod communities differed between trees in urban built‐up areas and reserves. Bat activity and richness were significantly reduced at trees in urban built‐up areas suggesting that echolocating bats may be disturbed by high levels of urbanization. Bird abundance and richness were highest at trees located in modified landscapes, highlighting the value of scattered trees for birds. Bird communities also differed between non‐urban and urban trees. Tree size had a significant effect on birds but did not affect trunk arthropods and bats. Large trees supported higher bird abundance, richness and more unique species compared to medium and small trees.

Main conclusions

Scattered trees support a diversity of wildlife. However, landscape context and tree size affected wildlife in contrasting ways. Land management strategies are needed to collectively account for responses exhibited by multiple taxa at varying spatial scales. We recommend that the retention and perpetuation of scattered trees in modified landscapes should be prioritized, hereby providing crucial habitat benefits to a multitude of taxa.  相似文献   

13.
The increasing conversion of agricultural and natural areas to human‐dominated urban landscapes is predicted to lead to a major decline in biodiversity worldwide. Two conditions that typically differ between urban environments and the surrounding landscape are increased temperature, and high patch isolation and habitat turnover rates. However, the extent and spatial scale at which these altered conditions shape biotic communities through selection and/or filtering on species traits are currently poorly understood. We sampled carabid beetles at 81 sites in Belgium using a hierarchically nested sampling design wherein three local‐scale (200 × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 × 3 km) urbanization levels. First, we showed that communities sampled in the most urbanized locations and landscapes displayed a distinct species composition at both local and landscape scale. Second, we related community means of species‐specific thermal preferences and dispersal capacity (based on European distribution and wing morphology, respectively) to the urbanization gradients. We showed that urban communities consisted on average of species with a preference for higher temperatures and with better dispersal capacities compared to rural communities. These shifts were caused by an increased number of species tolerating higher temperatures, a decreased richness of species with low thermal preference, and an almost complete depletion of species with very low‐dispersal capacity in the most urbanized localities. Effects of urbanization were most clearly detected at the local scale, although more subtle effects could also be found at the scale of entire landscapes. Our results demonstrate that urbanization may fundamentally and consistently alter species composition by exerting a strong filtering effect on species dispersal characteristics and favouring replacement by warm‐dwelling species.  相似文献   

14.
Urbanisation affects indigenous fauna in many ways; some species persist and even increase in urban areas, whereas others are lost. The causative mechanisms determining changes in distributions and community structure remain elusive. We investigated three hypothesized mechanisms, which influence success or failure of the insectivorous bat assemblage across the urban landscape of Sydney, Australia; landscape heterogeneity (diversity of land uses), productivity (as indexed by landscape geology) and trait diversity. We present data on species richness and activity (bat passes per night) collected systematically using ultrasonic bat detectors from randomly selected landscapes (each 25 km2). Landscapes were categorized into classes including ‘urban’, ‘suburban’ and ‘vegetated’, where suburban sites were additionally stratified based on geology, as a proxy for productivity. Four landscape elements were sampled within each landscape, including remnant bushland (>2 ha), riparian areas, open space/parkland and residential/built space. We found that there was significantly greater bat activity and more species of bat in areas on fertile shale geologies (p<0.05), supporting the productivity, rather than the heterogeneity hypothesis. Within landscapes, there was no significant effect of the landscape element sampled, although bushland and riparian sites recorded greater bat activity than open space or backyard sites. Using general linear mixed models we found bat activity and species richness were sensitive to landscape geology and increasing housing density at a landscape scale. Using an RLQ analysis a significant relationship was found between these variables and species traits in structuring the community present (p<0.01). Specifically, open‐adapted bats were associated with areas of greater housing density, while clutter‐adapted bats were uncommon in urban areas and more associated with greater amounts of bushland in the landscape. Overall we found greater support for the productivity and traits hypotheses, rather than the heterogeneity hypothesis. The degree of urbanisation and amount of bushland remaining, in combination with landscape geology, influenced bat activity and mediated the trait response. Our findings reflect global trends of species diversity and abundance in urban landscapes, suggesting that processes affecting bat species distribution in urban ecosystems may be predictable at a landscape scale.  相似文献   

15.

Background

Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature.

Methodology/Principal Findings

We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species.

Conclusions/Significance

Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification.  相似文献   

16.
17.
Threlfall CG  Law B  Banks PB 《PloS one》2012,7(6):e38800
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p?=?0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.  相似文献   

18.
Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m – 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the potential to become a standard tool for supporting landscape-scale decision-making as relevant data and open source, user-friendly, and peer-reviewed software become widely available.  相似文献   

19.
Land conversion and modification threatens many wildlife and plant species in the northern Great Plains, including bats. Our objective was to assess the association of bat species with landscape features in the northern Great Plains of North Dakota, USA, taking the first step towards understanding the habitat needs of bats in this region. We examined patterns of bat activity across different landscapes, identified those landscape features associated with high levels of bat activity, and determined which specific land features (i.e., vegetation and water types) were most commonly associated with each bat species. We used passive acoustic monitoring to measure bat activity at sites across North Dakota, and assessed detailed land characteristics at each site. We used nonmetric multidimensional scaling and multivariate regression tree analysis to examine relationships between bat activity and landscape variables. Bat foraging activity was influenced by structural landscape characteristics and the availability of specific water resources. High levels of bat activity were associated with riparian forested areas of varying structural complexity, ponds, and, to a lesser extent, open riparian lands. Individual bat species were influenced by land type and water resources differently. We identified big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus) as indicators of open riparian and pond landscapes, respectively. These results highlight the importance of prairie riparian landscapes and maintaining heterogeneity across the landscape for conservation and management of bat communities. Further, we identified ponds as an important landscape feature for little brown bats, a species of conservation concern, indicating that this specific feature should be a focus of conservation efforts on prairie wetlands. © 2019 The Wildlife Society.  相似文献   

20.
Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland‐dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free‐standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed‐effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White‐striped free‐tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland‐dependent and nocturnal fauna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号