首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.  相似文献   

2.
    
Noninvasive genetics based on microsatellite markers has become an indispensable tool for wildlife monitoring and conservation research over the past decades. However, microsatellites have several drawbacks, such as the lack of standardisation between laboratories and high error rates. Here, we propose an alternative single‐nucleotide polymorphism (SNP)‐based marker system for noninvasively collected samples, which promises to solve these problems. Using nanofluidic SNP genotyping technology (Fluidigm), we genotyped 158 wolf samples (tissue, scats, hairs, urine) for 192 SNP loci selected from the Affymetrix v2 Canine SNP Array. We carefully selected an optimised final set of 96 SNPs (and discarded the worse half), based on assay performance and reliability. We found rates of missing data in this SNP set of <10% and genotyping error of ~1%, which improves genotyping accuracy by nearly an order of magnitude when compared to published data for other marker types. Our approach provides a tool for rapid and cost‐effective genotyping of noninvasively collected wildlife samples. The ability to standardise genotype scoring combined with low error rates promises to constitute a major technological advancement and could establish SNPs as a standard marker for future wildlife monitoring.  相似文献   

3.
    
Defining subpopulations using genetics has traditionally used data from microsatellite markers to investigate population structure; however, single‐nucleotide polymorphisms (SNPs) have emerged as a tool for detection of fine‐scale structure. In Hudson Bay, Canada, three polar bear (Ursus maritimus) subpopulations (Foxe Basin (FB), Southern Hudson Bay (SH), and Western Hudson Bay (WH)) have been delineated based on mark–recapture studies, radiotelemetry and satellite telemetry, return of marked animals in the subsistence harvest, and population genetics using microsatellites. We used SNPs to detect fine‐scale population structure in polar bears from the Hudson Bay region and compared our results to the current designations using 414 individuals genotyped at 2,603 SNPs. Analyses based on discriminant analysis of principal components (DAPC) and STRUCTURE support the presence of four genetic clusters: (i) Western—including individuals sampled in WH, SH (excluding Akimiski Island in James Bay), and southern FB (south of Southampton Island); (ii) Northern—individuals sampled in northern FB (Baffin Island) and Davis Strait (DS) (Labrador coast); (iii) Southeast—individuals from SH (Akimiski Island in James Bay); and (iv) Northeast—individuals from DS (Baffin Island). Population structure differed from microsatellite studies and current management designations demonstrating the value of using SNPs for fine‐scale population delineation in polar bears.  相似文献   

4.
  总被引:1,自引:0,他引:1  
Data on hundreds or thousands of single nucleotide polymorphisms (SNPs) provide detailed information about the relationships between individuals, but currently few tools can turn this information into a multigenerational pedigree. I present the r package sequoia , which assigns parents, clusters half‐siblings sharing an unsampled parent and assigns grandparents to half‐sibships. Assignments are made after consideration of the likelihoods of all possible first‐, second‐ and third‐degree relationships between the focal individuals, as well as the traditional alternative of being unrelated. This careful exploration of the local likelihood surface is implemented in a fast, heuristic hill‐climbing algorithm. Distinction between the various categories of second‐degree relatives is possible when likelihoods are calculated conditional on at least one parent of each focal individual. Performance was tested on simulated data sets with realistic genotyping error rate and missingness, based on three different large pedigrees (= 1000–2000). This included a complex pedigree with overlapping generations, occasional close inbreeding and some unknown birth years. Parentage assignment was highly accurate down to about 100 independent SNPs (error rate <0.1%) and fast (<1 min) as most pairs can be excluded from being parent–offspring based on opposite homozygosity. For full pedigree reconstruction, 40% of parents were assumed nongenotyped. Reconstruction resulted in low error rates (<0.3%), high assignment rates (>99%) in limited computation time (typically <1 h) when at least 200 independent SNPs were used. In three empirical data sets, relatedness estimated from the inferred pedigree was strongly correlated to genomic relatedness.  相似文献   

5.
    
Robust estimates of demographic parameters are critical for effective wildlife conservation and management but are difficult to obtain for elusive species. We estimated the breeding and adult population sizes, as well as the minimum population size, in a high‐density brown bear population on the Shiretoko Peninsula, in Hokkaido, Japan, using DNA‐based pedigree reconstruction. A total of 1288 individuals, collected in and around the Shiretoko Peninsula between 1998 and 2020, were genotyped at 21 microsatellite loci. Among them, 499 individuals were identified by intensive genetic sampling conducted in two consecutive years (2019 and 2020) mainly by noninvasive methods (e.g., hair and fecal DNA). Among them, both parents were assigned for 330 bears, and either maternity or paternity was assigned to 47 and 76 individuals, respectively. The subsequent pedigree reconstruction indicated a range of breeding and adult (≥4 years old) population sizes: 128–173 for female breeders and 66–91 male breeders, and 155–200 for female adults and 84–109 male adults. The minimum population size was estimated to be 449 (252 females and 197 males) in 2019. Long‐term continuous genetic sampling prior to a short‐term intensive survey would enable parentage to be identified in a population with a high probability, thus enabling reliable estimates of breeding population size for elusive species.  相似文献   

6.
    
Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.  相似文献   

7.
    
Recent advances in high‐throughput sequencing technologies have offered the possibility to generate genomewide sequence data to delineate previously unidentified genetic structure, obtain more accurate estimates of demographic parameters and to evaluate potential adaptive divergence. Here, we identified 27 556 single nucleotide polymorphisms for the small yellow croaker (Larimichthys polyactis) using restriction‐site‐associated DNA (RAD) sequencing of 24 individuals from two populations. Significant sources of genetic variation were identified, with an average nucleotide diversity (π) of 0.00105 ± 0.000425 across individuals, and long‐term effective population size was thus estimated to range between 26 172 and 261 716. According to the results, no differentiation between the two populations was detected based on the SNP data set of top quality score per contig or neutral loci. However, the two analysed populations were highly differentiated based on SNP data set of both top FST value per contig and the outlier SNPs. Moreover, local adaptation was highlighted by an FST‐based outlier tests implemented in LOSITAN and a total of 538 potentially locally selected SNPs were identified. blast2go annotation of contigs containing the outlier SNPs yielded hits for 37 (66%) of 56 significant blastx matches. Candidate genes for local adaptation constituted a wide array of biological functions, including cellular response to oxidative stress, actin filament binding, ion transmembrane transport and synapse assembly. The generated SNP resources in this study provided a valuable tool for future population genetics and genomics studies of L. polyactis.  相似文献   

8.
  总被引:1,自引:0,他引:1  
The optimal management of the commercially important, but mostly over‐exploited, pelagic tunas, albacore (Thunnus alalunga Bonn., 1788) and Atlantic bluefin tuna (BFT; Thunnus thynnus L., 1758), requires a better understanding of population structure than has been provided by previous molecular methods. Despite numerous studies of both species, their population structures remain controversial. This study reports the development of single nucleotide polymorphisms (SNPs) in albacore and BFT and the application of these SNPs to survey genetic variability across the geographic ranges of these tunas. A total of 616 SNPs were discovered in 35 albacore tuna by comparing sequences of 54 nuclear DNA fragments. A panel of 53 SNPs yielded FST values ranging from 0.0 to 0.050 between samples after genotyping 460 albacore collected throughout the distribution of this species. No significant heterogeneity was detected within oceans, but between‐ocean comparisons (Atlantic, Pacific and Indian oceans along with Mediterranean Sea) were significant. Additionally, a 17‐SNP panel was developed in Atlantic BFT by cross‐species amplification in 107 fish. This limited number of SNPs discriminated between samples from the two major spawning areas of Atlantic BFT (FST = 0.116). The SNP markers developed in this study can be used to genotype large numbers of fish without the need for standardizing alleles among laboratories.  相似文献   

9.
10.
11.
    
Estimates of population size are critical for conservation and management, but accurate estimates are difficult to obtain for many species. Noninvasive genetic methods are increasingly used to estimate population size, particularly in elusive species such as large carnivores, which are difficult to count by most other methods. In most such studies, genotypes are treated simply as unique individual identifiers. Here, we develop a new estimator of population size based on pedigree reconstruction. The estimator accounts for individuals that were directly sampled, individuals that were not sampled but whose genotype could be inferred by pedigree reconstruction, and individuals that were not detected by either of these methods. Monte Carlo simulations show that the population estimate is unbiased and precise if sampling is of sufficient intensity and duration. Simulations also identified sampling conditions that can cause the method to overestimate or underestimate true population size; we present and discuss methods to correct these potential biases. The method detected 2–21% more individuals than were directly sampled across a broad range of simulated sampling schemes. Genotypes are more than unique identifiers, and the information about relationships in a set of genotypes can improve estimates of population size.  相似文献   

12.
    
With the advent of next generation sequencing, new avenues have opened to study genomics in wild populations of non‐model species. Here, we describe a successful approach to a genome‐wide medium density Single Nucleotide Polymorphism (SNP) panel in a non‐model species, the house sparrow (Passer domesticus), through the development of a 10 K Illumina iSelect HD BeadChip. Genomic DNA and cDNA derived from six individuals were sequenced on a 454 GS FLX system and generated a total of 1.2 million sequences, in which SNPs were detected. As no reference genome exists for the house sparrow, we used the zebra finch (Taeniopygia guttata) reference genome to determine the most likely position of each SNP. The 10 000 SNPs on the SNP‐chip were selected to be distributed evenly across 31 chromosomes, giving on average one SNP per 100 000 bp. The SNP‐chip was screened across 1968 individual house sparrows from four island populations. Of the original 10 000 SNPs, 7413 were found to be variable, and 99% of these SNPs were successfully called in at least 93% of all individuals. We used the SNP‐chip to demonstrate the ability of such genome‐wide marker data to detect population sub‐division, and compared these results to similar analyses using microsatellites. The SNP‐chip will be used to map Quantitative Trait Loci (QTL) for fitness‐related phenotypic traits in natural populations.  相似文献   

13.
    
The role of evolution in biological invasion studies is often overlooked. In order to evaluate the evolutionary mechanisms behind invasiveness, it is crucial to identify the source populations of the introduction. Studies in population genetics were carried out on Robinia pseudoacacia L., a North American tree which is now one of the worst invasive tree species in Europe. We realized large‐scale sampling in both the invasive and native ranges: 63 populations were sampled and 818 individuals were genotyped using 113 SNPs. We identified clonal genotypes in each population and analyzed between and within range population structure, and then, we compared genetic diversity between ranges, enlarging the number of SNPs to mitigate the ascertainment bias. First, we demonstrated that European black locust was introduced from just a limited number of populations located in the Appalachian Mountains, which is in agreement with the historical documents briefly reviewed in this study. Within America, population structure reflected the effects of long‐term processes, whereas in Europe it was largely impacted by human activities. Second, we showed that there is a genetic bottleneck between the ranges with a decrease in allelic richness and total number of alleles in Europe. Lastly, we found more clonality within European populations. Black locust became invasive in Europe despite being introduced from a reduced part of its native distribution. Our results suggest that human activity, such as breeding programs in Europe and the seed trade throughout the introduced range, had a major role in promoting invasion; therefore, the introduction of the missing American genetic cluster to Europe should be avoided.  相似文献   

14.
    
An important aim in animal breeding is the improvement of growth and meat quality traits. Previous studies have demonstrated that genetic variants in the fat mass and obesity associated (FTO) gene have a relatively large effect on human obesity as well as on body composition in rodents and, more recently, in livestock. Here, we examined the effects of the FTO gene variants on growth and carcass traits in the Slovenian population of Simmental (SS) and Brown (SB) cattle. To validate and identify new polymorphisms, we used sequencing, PCR‐RFLP analysis and TaqMan assays in the SS breed and FTO gene variants data from the Illumina BovineSNP50 v1 array for the SB breed. Sequencing of the eight samples of progeny‐tested SS sires detected 108 single nucleotide polymorphisms (SNPs) in the bovine FTO gene. Statistical analyses between growth and carcass traits and 34 FTO polymorphisms revealed significant association of FTO variants with lean meat percentage in both breeds. Additionally, FTO SNPs analyzed in SS cattle were associated with fat percentage, bone weight and live weight at slaughter. The FTO gene can thus be regarded as a candidate gene for the marker‐assisted selection programs in our and possibly other populations of cattle. Future studies in cattle might reveal novel roles for the FTO gene in shaping carcass traits in livestock species as well as body composition control in other mammals.  相似文献   

15.
16.
    
Wallace's riverine barrier hypothesis postulates that large rivers, such as the Amazon and its tributaries, reduce or prevent gene flow between populations on opposite banks, leading to allopatry and areas of species endemism occupying interfluvial regions. Several studies have shown that two major tributaries, Rio Branco and Rio Negro, are important barriers to gene flow for birds, amphibians and primates. No botanical studies have considered the potential role of the Rio Branco as a barrier, while a single botanical study has evaluated the Rio Negro as a barrier. We studied an Amazon shrub, Amphirrhox longifolia (A. St.‐Hil.) Spreng (Violaceae), as a model to test the riverine barrier hypothesis. Twenty‐six populations of A. longifolia were sampled on both banks of the Rio Branco and Rio Negro in the core Amazon Basin. Double‐digest RADseq was used to identify 8,010 unlinked SNP markers from the nuclear genome of 156 individuals. Data relating to population structure support the hypothesis that the Rio Negro acted as a significant genetic barrier for A. longifolia. On the other hand, no genetic differentiation was detected among populations spanning the narrower Rio Branco, which is a tributary of the Rio Negro. This study shows that the strength of riverine barriers for Amazon plants is dependent on the width of the river separating populations and species‐specific dispersal traits. Future studies of plants with contrasting life history traits will further improve our understanding of the landscape genetics and allopatric speciation history of Amazon plant diversity.  相似文献   

17.
    
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

18.
    
Among polar bears (Ursus maritimus), fitness is dependent on body size through males’ abilities to win mates, females’ abilities to provide for their young and all bears’ abilities to survive increasingly longer fasting periods caused by climate change. In the Western Hudson Bay subpopulation (near Churchill, Manitoba, Canada), polar bears have declined in body size and condition, but nothing is known about the genetic underpinnings of body size variation, which may be subject to natural selection. Here, we combine a 4449‐individual pedigree and an array of 5,433 single nucleotide polymorphisms (SNPs) to provide the first quantitative genetic study of polar bears. We used animal models to estimate heritability (h2) among polar bears handled between 1966 and 2011, obtaining h2 estimates of 0.34–0.48 for strictly skeletal traits and 0.18 for axillary girth (which is also dependent on fatness). We genotyped 859 individuals with the SNP array to test for marker–trait association and combined p‐values over genetic pathways using gene‐set analysis. Variation in all traits appeared to be polygenic, but we detected one region of moderately large effect size in body length near a putative noncoding RNA in an unannotated region of the genome. Gene‐set analysis suggested that variation in body length was associated with genes in the regulatory cascade of cyclin expression, which has previously been associated with body size in mice. A greater understanding of the genetic architecture of body size variation will be valuable in understanding the potential for adaptation in polar bear populations challenged by climate change.  相似文献   

19.
    
Variation in coat colour genotypes of archaeological cattle samples from Finland was studied by sequencing 69 base pairs of the extension locus (melanocortin 1‐receptor, MC1R) targeting both a transition and a deletion defining the three main alleles, such as dominant black (ED), wild type (E+) and recessive red (e). The 69‐bp MC1R sequence was successfully analysed from 23 ancient (1000–1800 AD) samples. All three main alleles and genotype combinations were detected with allele frequencies of 0.26, 0.17 and 0.57 for ED, E+ and e respectively. Recessive red and dominant black alleles were detected in both sexes. According to the best of our knowledge, this is the first ancient DNA study defining all three main MC1R alleles. Observed MC1R alleles are in agreement with calculated phenotype frequencies from historical sources. The division of ancient Finnish cattle population into modern Finnish breeds with settled colours was dated to the 20th century. From the existing genotyped populations in Europe (43 breeds, = 2360), the closest match to ancient MC1R genotype frequencies was with the Norwegian native multicoloured breeds. In combined published genotype data of ancient (= 147) and genotypes and phenotypes of modern Nordic cattle (= 738), MC1R allele frequencies showed temporal changes similar to neutral mitochondrial DNA and Y‐chromosomal haplotypes analysed earlier. All three markers indicate major change in genotypes in Nordic cattle from the Late Iron Age to the Medieval period followed by slower change through the historical periods until the present.  相似文献   

20.
    
Predicting the consequences of environmental changes, including human‐mediated climate change on species, requires that we quantify range‐wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome‐wide single nucleotide polymorphisms (SNPs) identified with double‐digest restriction site‐associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号