首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally considered that sexual organisms show faster evolutionary adaptation than asexual organisms because sexuals can accumulate adaptive mutations through recombination. Yet, empirical evidence often shows that the geographic range size of sexual species is narrower than that of closely related asexual species, which may seem as if asexuals can adapt to more varied environments. Two potential explanations for this apparent contradiction considered by the existing theory are reproduction assurance and migration load. Here, we consider both reproductive assurance and migration load within a single model to comparatively examine their effects on range expansions of sexuals and asexuals across an environmental gradient. The model shows that higher dispersal propensity decreases sexuals' disadvantage in reproductive assurance while increasing their disadvantage in migration load. Moreover, lower mutation rate constrains adaptation more strongly in asexuals than in sexuals. Thus, high dispersal propensity and high mutation rates promote that asexuals have wider range sizes than sexuals. Intriguingly, our model reveals that sexuals can have wider geographic range sizes than asexuals under low dispersal propensity and low mutation rates, a pattern consistent with a few exceptional empirical cases. Combining reproductive assurance and migration load provides a useful perspective to better understand the relationships between species' mating systems and their geographic ranges.  相似文献   

2.
In certain planarian species that are able to switch between asexual and sexual reproduction, determining whether a sexual has the ability to switch to the asexual state is problematic, which renders the definition of sexuals controversial. We experimentally show the existence of two sexual races, acquired and innate, in the planarian Dugesia ryukyuensis. Acquired sexuals used in this study were experimentally switched from asexuals. Inbreeding of acquired sexuals produced both innate sexuals and asexuals, but inbreeding of innate sexuals produced innate sexuals only and no asexuals. Acquired sexuals, but not innate sexuals, were forced to become asexuals by ablation and regeneration (asexual induction). This suggests that acquired sexuals somehow retain asexual potential, while innate sexuals do not. We also found that acquired sexuals have the potential to develop hyperplastic and supernumerary ovaries, while innate sexuals do not. In this regard, acquired sexuals were more prolific than innate sexuals. The differences between acquired and innate sexuals will provide a structure for examining the mechanism underlying asexual and sexual reproduction in planarians.  相似文献   

3.
The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single‐nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype (‘1A’) was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.  相似文献   

4.
What advantage do sexually reproducing organisms gain from their mode of reproduction that compensates for their twofold loss in reproductive rate relative to their asexual counterparts? One version of the Red Queen hypothesis suggests that selective pressure from parasites is strongest on the most common genotype in a population, and thus genetically identical clonal lineages are more vulnerable to parasitism over time than genetically diverse sexual lineages. Our surveys of the ectoparasites of an asexual gecko and its two sexual ancestral species show that the sexuals have a higher prevalence, abundance, and mean intensity of mites than asexuals sharing the same habitat. Our experimental data indicate that in one sexual/asexual pair this pattern is at least partly attributable to higher attachment rates of mites to sexuals. Such a difference may occur as a result of exceptionally high susceptibility of the sexuals to mites because of their low genetic diversity (relative to other more-outbred sexual species) and their potentially high stress levels, or as a result of exceptionally low susceptibility of the asexuals to mites because of their high levels of heterozygosity.  相似文献   

5.
The evolution and maintenance of sexual reproduction is still one of the major unresolved problems in evolutionary biology. Sexual reproduction is fraught with a number of costs as compared to asexual reproduction. For example, sexuals have to produce males, which–given a 1:1 sex ratio—results in a two-fold advantage for asexuals that do not produce males. Consequently, asexuals will outperform and replace sexuals over time assuming everything else is equal. Nonetheless, a few cases of closely related asexuals and sexuals have been documented to coexist stably in natural systems. We investigated the presence of a two-fold cost in a unique system of three closely related fish species: the asexual Amazon Molly (Poecilia formosa), and two sexual species, Sailfin Molly (P. latipinna) and Atlantic Molly (P. mexicana). Amazon Molly reproduce gynogenetically (by sperm dependent parthenogenesis) and always coexist with one of the sexual species, which serves as sperm donor. In the laboratory, we compared reproductive output between P. formosa and P. mexicana as well as P. formosa and P. latipinna. We found no differences in the fecundity in either comparison of a sexual and the asexual species. Under the assumption of a 1:1 sex ratio, the asexual Amazon Molly should consequently have a full two-fold advantage and be able to outcompete sexuals over time. Hence, the coexistence of the species pairs in nature presents a paradox still to be solved.  相似文献   

6.
Justyna Wolinska  Curtis M. Lively 《Oikos》2008,117(11):1637-1646
Sex is paradoxical, because asexuals should replace their sexual ancestors by avoiding the demographic cost of producing males (hereafter referred to as the cost‐of‐males). Despite the large body of theoretical and empirical work dealing with the paradox of sex, the cost‐of‐males assumption has been rarely tested. In the present study, we tested the cost‐of‐males assumption in the cladoceran Daphnia pulex. Populations of this species consist of both cyclically parthenogenetic (i.e. sexuals) and obligately parthenogenetic (i.e. asexuals) lineages. In addition, some of the asexual lineages produce only female offspring, whereas others produce functional males, which can mate with sexual females. We compared the reproductive investment of sexuals, male‐producing asexuals, and non‐male‐producing asexuals when raised separately under various environmental conditions. We also determined the outcome of competition between pair‐wise combinations of these reproductive modes. The cost of males was evident when sexual and asexual females were raised separately: sexuals produced fewer female offspring. However, there was no cost of males when reproductive modes were raised in pairs, as sexuals won the competition with asexuals. Our results directly relate to the field conditions experienced by D. pulex. Sexuals might suffer the cost of males at the beginning of the season, when resource competition is low; but when conditions deteriorate as the population approaches carrying capacity, sexuals seem to be better competitors in spite of male production.  相似文献   

7.
The frozen niche variation hypothesis suggests that sexuals can coexist with closely related, ecologically similar asexuals because sexuals and narrowly adapted asexual clones use different resources. However, because a collection of clones can potentially dominate the entire resource axis, such coexistence is not stable. We show that if the sexual population inhabits multiple selection regimes and asexuals are intrinsically slightly less fit than sexuals, migration load in the sexual population allows sexuals and asexuals to coexist stably at the regional level. By decreasing sexuals' fitness, migration load allows asexuals to invade the sexual population. However, as the sexuals' range contracts, migration load decreases, preventing asexuals from driving sexuals to extinction. This "buffering" effect of migration load is even more relevant in models that include more realistic conditions, such as demographic asymmetries or explicit spatial structure.  相似文献   

8.
In many plant and animal species, sexual and asexual forms have different geographical distributions ('geographic parthenogenesis'). The common dandelion Taraxacum officinale s.l. provides a particularly clear example of differing distributions: diploid sexuals are restricted to southern and central Europe, while triploid asexuals occur across Europe. To get a better understanding of the factors underlying this pattern, we studied the distribution and demography of sexuals and asexuals in a mixed population that was located at the northern distribution limit of the sexuals. In this population three adjacent, contrasting microhabitats were found: a foreland and south and north slopes of a river dike. Comparative analyses of the distribution, phenology and demography indicated that sexuals had a stronger preference for the south slope than did asexuals. We therefore propose that the large-scale geographic parthenogenesis in T. officinale is shaped by an environmental gradient which acts upon the sexuals.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 205–218.  相似文献   

9.
Diversification in sexual and asexual organisms   总被引:4,自引:0,他引:4  
Abstract Sexual reproduction has long been proposed as a major factor explaining the existence of species and species diversity. Yet, the importance of sex for diversification remains obscure because of a lack of critical theory, difficulties of applying universal concepts of species and speciation, and above all the scarcity of empirical tests. Here, we use genealogical theory to compare the relative tendency of strictly sexual and asexual organisms to diversify into discrete genotypic and morphological clusters. We conclude that asexuals are expected to display discrete clusters similar to those found in sexual organisms. Whether sexuals or asexuals display stronger clustering depends on a number of factors, but in at least some scenarios asexuals should display a stronger pattern. Confounding factors aside, the only explanation we identify for stronger patterns of diversification in sexuals than asexuals is if the faster rates of adaptive change conferred by sexual reproduction promote greater clustering. Quantitative comparisons of diversification in related sexual and asexual taxa are needed to resolve this issue. The answer should shed light not only on the importance of the different stages leading to diversification, but also on the adaptive consequences of sex, still largely unexplored from a macroevolutionary perspective.  相似文献   

10.
It has been known for long time that asexual organisms may affect the distribution of sexual taxa. In fact, such phenomenon is inherent in the concept of geographical parthenogenesis. On the other hand, it was generally hypothesized that sperm-dependent asexuals may not exercise the same effect on related sexual population, due to their dependence upon them as sperm-donors. Recently, however, it became clear that sperm-dependent asexuals may directly or indirectly affect the distribution of their sperm-hosts, but rather in a small scale. No study addressed the large-scale biogeographic effect of the coexistence of such asexuals with the sexual species. In our study we were interested in the effect of sexual–asexual coexistence on the speed of spatial expansion of the whole complex. We expand previously published Lotka–Volterra model of the coexistence of sexual and gynogenetic forms of spined loach (Cobitis; Teleostei) hybrid complex by diffusion. We show that presence of sperm-dependent parthenogens is likely to negatively affect the spatial expansion of sexuals, and hence the whole complex, compared to pure sexual population. Given that most of the known sperm-dependent asexual complexes are distributed in areas prone to climate-induced colonization/extinction events, we conclude that such mechanism may be an important agent in determining the biogeography of sexual taxa and therefore requires further attention including empirical tests.  相似文献   

11.
  • Although reproductive assurance has been suggested to be one of the most important factors shaping the differential distributional patterns between sexuals and asexuals (geographic parthenogenesis), it has only rarely been studied in natural populations of vascular plants with autonomous apomixis. Moreover, there are almost no data concerning the putative relationship between the level of apomictic versus sexual plant reproduction on one hand, and reproductive assurance on the other.
  • We assessed the level of sexual versus apomictic reproduction in diploid and triploid plants of Hieracium alpinum across its distributional range using flow cytometric analyses of seeds, and compared the level of potential and realized seed set, i.e. reproductive assurance, between the two cytotypes under field and greenhouse conditions.
  • Flow cytometric screening of embryos and endosperms of more than 4,100 seeds showed that diploids produced solely diploid progeny sexually, while triploids produced triploid progeny by obligate apomixis. Potential fruit set was much the same in diploids and triploids from the field and the greenhouse experiment. While in the pollination‐limited environment in the greenhouse apomictic triploids had considerably higher realized fruit set than sexual diploids, there was no significant difference between cytotypes under natural conditions. In addition, sexuals varied to a significantly larger extent in realized fruit set than asexuals under both natural and greenhouse conditions.
  • Our results indicate that triploid plants reproduce by obligate apomixis, assuring more stable and predictable fruit reproduction when compared to sexual diploids. This advantage could provide apomictic triploids with a superior colonisation ability, mirrored in a strong geographic parthenogenesis pattern observed in this species.
  相似文献   

12.
In animals and land plants, many asexual species originate through inter‐ or intraspecific crosses, and such heterozygous asexuals frequently are more abundant than their sexual relatives in marginal habitats. Although asexual species have been reported in various macroalgal taxa, detailed information regarding their distribution, heterozygosity, and origin is limited. Because many asexual tetrasporophyte strains of Caloglossa vieillardii have been isolated from South Australia, far from their core tropical habitats, we re‐examined the distribution range of asexual C. vieillardii and genotyped these and other western Pacific strains using an actin gene marker. We confirmed the marginal distribution of the asexuals; however, a small patch of sexual thalli was newly discovered 450 km further west from asexual populations in South Australia. Three heterozygous genotypes and one homozygous genotypes were detected from nine asexual populations; 21 heterozygous strains were obligately asexual, but one homozygous strain suddenly produced sexual gametophytes after several years of culture. We hypothesized that the most abundant heterozygous genotype (defined as type 3/4) in asexual populations occurred by a cross between type 3 and type 4 allele gametophytes, both of which were isolated from the Australian coasts. In the crossing experiments, certain combinations between type 3 females and type 4 males produced tetrasporophytes, which recycled successive tetrasporophytes. In the culture experiments, whereas both sexual and asexual strains successfully produced tetraspores at 12°C, no sexual strains released carpospores below 14°C. However, it is uncertain whether this slight difference of maturation temperature was related to the marginal distribution of asexual C. vieillardii.  相似文献   

13.
Why sex is so common remains unclear; what is certain is that the predominance of sex despite its profound costs means that it must confer major advantages. Here, we use elemental and nucleic acid assays to evaluate a key element of a novel, integrative hypothesis considering whether sex might be favoured because of differences in body composition between sexuals and asexuals. We found that asexual Potamopyrgus antipodarum, a New Zealand snail, have markedly higher bodily phosphorus and nucleic acid content per unit mass than sexual counterparts. These differences coincide with and are almost certainly linked to the higher ploidy of the asexuals. Our results are the first documented body composition differences between sexual and asexual organisms, and the first detected phenotypic difference between sexual and asexual P. antipodarum, an important natural model system for the study of the maintenance of sex. These findings also verify a central component of our hypothesis that competition between diploid sexuals and polyploid asexuals could be influenced by phosphorus availability.  相似文献   

14.
In the midwestern United States the Daphnia pulex complex consists of a mosaic of sexual and asexual populations, providing a useful model system for studying the evolutionary forces underlying the maintenance of sex. One asexual and two sexual populations were surveyed for genetic variation for isozymes, mitochondrial DNA, and life-history characters. While the sexual populations exhibited substantial levels of genetic variance for fitness characters, no variation was detected in the asexual population at any level. However, a parallel survey among asexual clones derived from other ponds revealed large amounts of quantitative variation among clones, even among those with the same molecular profile. As a group, the asexuals are more variable for life histories than are the sexual populations. The molecular data indicate a relatively recent origin for the extant asexual D. pulex. The polyphyletic origin of these clones, combined with their microevolutionary potential, provides an explanation for their broad geographic distribution. The distribution of sex in the complex cannot be explained with the standard models that assume an invariant asexual population in reproductive isolation from the parental species. Although the frequency of asexuality may be driven by the spread of a sex-limited meiosis suppressor through sexual populations, the complete displacement of sexuality may be prevented by ecological distinctions between the two classes of individuals. On average, the asexuals are larger but produce smaller clutches than the sexuals.  相似文献   

15.
In several asexual taxa, reproduction requires mating with related sexual species to stimulate egg development, even though genetic material is not incorporated from the sexuals (gynogenesis). In cases in which gynogens do not invest in male function, they can potentially have a twofold competitive advantage over sexuals because the asexuals avoid the cost of producing males. If unmitigated, however, the competitive success of the asexuals would ultimately lead to their own demise, following the extinction of the sexual species that stimulate egg development. We have studied a model of mate choice among sexual individuals and asexual gynogens, where males of the sexual species preferentially mate with sexual females over gynogenetic females, to determine if such mating preferences can stably maintain both gynogenetic and sexual individuals within a community. Our model shows that stable coexistence of gynogens and their sexual hosts can occur when there is variation among males in the degree of preference for mating with sexual females and when pickier males pay a higher cost of preference.  相似文献   

16.
The distributional pattern of geographical parthenogenesis has not yet been clearly explained. In Daphnia pulex, asexuals are found at higher latitude and in more marginal habitats than their sexual relatives. In addition, some asexual lineages, especially northern ones, are polyploid. This study aimed to test if polyploid clones are more resistant than sympatric diploid clones to a wide range of environmental factors and if asexual Daphnia (diploid clones) are more tolerant of extreme environmental conditions than sexual ones. We report significant differences in survivorship after short-term exposure to acute pH, conductivities, and temperature in 12 lineages of the Daphnia pulex complex. Ploidy level, reproductive mode, geographic origin, and heterozygosity level had a significant effect on survival but their effect varied depending on environmental factors.  相似文献   

17.
Besides several exceptions, asexual metazoans are usually viewed as ephemeral sinks for genomes, which become ‘frozen’ in clonal lineages after their emergence from ancestral sexual species. Here, we investigated whether and at what rate the asexuals are able to introgress their genomes back into the parental sexual population, thus more or less importantly affecting the gene pools of sexual species. We focused on hybridogenetic hybrids of western Palaearctic water frogs (Pelophylax esculentus), which originate through hybridization between P. ridibundus and P. lessonae, but transmit only clonal ridibundus genome into their gametes. Although usually mating with P. lessonae, P. esculentus may upon mating with P. ridibundus or another hybrid produce sexually reproducing P. ridibundus offspring with the introgressed ex‐clonal genome. We compared the rate of nuclear amplified fragment length polymorphism (AFLP) and mitochondrial introgression in two types of populations, that is, those where P. ridibundus occurs in isolation and those where it lives with the hybridogens. Although significant differentiation (Φpt) between sexual and clonal ridibundus genomes suggested limited gene flow between sexuals and hybridogens, a non‐negligible (~5%) proportion of P. ridibundus bore introgressed mtDNA and AFLP markers. Whereas transfer of mtDNA was exclusively unidirectional, introgression of nuclear markers was bidirectional. The proportion of introgressed P. ridibundus was highest in syntopic populations with P. esculentus, proving an ongoing and site‐specific interspecific genetic transfer mediated by hybridogenetic hybrids. It turns out that asexual hybrids are not just a sink for genes of sexual species, but may significantly influence the genetic architecture of their sexual counterparts.  相似文献   

18.
Recent and ancient asexuality in Timema walkingsticks   总被引:1,自引:0,他引:1  
Determining the evolutionary age of asexual lineages should help in inferring the temporal scale under which asexuality and sex evolve and assessing selective factors involved in the evolution of asexuality. We used 416 bp of the mitochondrial COI gene to infer phylogenetic relationships of virtually all known Timema walkingstick species, including extensive intraspecific sampling for all five of the asexuals and their close sexual relatives. The asexuals T. douglasi and T. shepardii were very closely related to each other and evolutionarily young (less than 0.5 million years old). For the asexuals T. monikensis and T. tahoe, evidence for antiquity was weak since only one population of each was sampled, intraspecific divergences were low, and genetic distances to related sexuals were high: maximum-likelihood molecular-clock age estimates ranged from 0.26 to 2.39 million years in T. monikensis and from 0.29-1.06 million years in T. tahoe. By contrast, T. genevieve was inferred to be an ancient asexual, with an age of 0.81 to 1.42 million years. The main correlate of the age of asexual lineages was their geographic position, with younger asexuals being found further north.  相似文献   

19.
Poor male function favours the coexistence of sexual and asexual relatives   总被引:1,自引:0,他引:1  
Britton  & Mogie 《Ecology letters》2001,4(2):116-121
Classical models of the evolution of sex typically assume that an asexual lineage, once derived, is reproductively separate from the sexual lineage from which it was derived. However, many asexuals, including hermaphrodite plants, produce male gametes capable of fertilising the eggs of co-existing sexuals, giving rise to sexual and asexual progeny. This male function of asexuals may be poor, and it has been proposed that this could favour sexuality and adversely affect the successful establishment of asexual lineages. We show that things are more complicated than this; the effect is frequency-dependent and poor male function may sometimes favour asexuality. In a spatially distributed population of flowering plants, it can prevent the successful invasion of either reproductive mode by the other via long-range dispersal. Consequently invasions must be driven by short-range dispersal, and are therefore extremely slow. Thus poor male function favours long-term co-existence of sexuals and asexuals. When coupled with the superior ability of asexuals to colonise virgin territory after an Ice Age, it may explain current ecological distribution patterns.  相似文献   

20.
Parasites and sexual reproduction in psychid moths   总被引:4,自引:0,他引:4  
Persistence of sexual reproduction among coexisting asexual competitors has been a major paradox in evolutionary biology. The number of empirical studies is still very limited, as few systems with coexisting sexual and strictly asexual lineages have been found. We studied the ecological mechanisms behind the simultaneous coexistence of a sexually and an asexually reproducing closely related species of psychid moth in Central Finland between 1999 and 2001. The two species compete for the same resources and are often infected by the same hymenopteran parasitoids. They are extremely morphologically and behaviorally similar and can be separated only by their reproductive strategy (sexual vs. asexual) or by genetic markers. We compared the life-history traits of these species in two locations where they coexist to test predictions of the cost-of-sex hypothesis. We did not find any difference in female size, number of larvae, or offspring survival between the sexuals and asexuals, indicating that sexuals are subject to cost of sex. We also used genetic markers to check and exclude the possibility of Wolbachia bacteria infection inducing parthenogenesis. None of the samples was infected by Wolbachia and, thus, it is unlikely that these bacteria could affect our results. We sampled 38 locations to study the prevalence of parasitoids and the moths' reproductive strategy. We found a strong positive correlation between prevalence of sexual reproduction and prevalence of parasitoids. In locations where parasitoids are rare asexuals exist in high densities, whereas in locations with a high parasitoid load the sexual species was dominant. Spatial distribution alone does not explain the results. We suggest that the parasite hypothesis for sex may offer an explanation for the persistence of sexual moths in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号