共查询到20条相似文献,搜索用时 15 毫秒
1.
The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. 相似文献
2.
Robert D. Hollister Jeremy L. May Kelseyann S. Kremers Craig E. Tweedie Steven F. Oberbauer Jennifer A. Liebig Timothy F. Botting Robert T. Barrett Jessica L. Gregory 《Ecology and evolution》2015,5(9):1881-1895
Few studies have clearly linked long‐term monitoring with in situ experiments to clarify potential drivers of observed change at a given site. This is especially necessary when findings from a site are applied to a much broader geographic area. Here, we document vegetation change at Barrow and Atqasuk, Alaska, occurring naturally and due to experimental warming over nearly two decades. An examination of plant cover, canopy height, and community indices showed more significant differences between years than due to experimental warming. However, changes with warming were more consistent than changes between years and were cumulative in many cases. Most cases of directional change observed in the control plots over time corresponded with a directional change in response to experimental warming. These included increases in canopy height and decreases in lichen cover. Experimental warming resulted in additional increases in evergreen shrub cover and decreases in diversity and bryophyte cover. This study suggests that the directional changes occurring at the sites are primarily due to warming and indicates that further changes are likely in the next two decades if the regional warming trend continues. These findings provide an example of the utility of coupling in situ experiments with long‐term monitoring to accurately document vegetation change in response to global change and to identify the underlying mechanisms driving observed changes. 相似文献
3.
Janet Prevéy Mark Vellend Nadja Rüger Robert D. Hollister Anne D. Bjorkman Isla H. Myers‐Smith Sarah C. Elmendorf Karin Clark Elisabeth J. Cooper Bo Elberling Anna M. Fosaa Gregory H. R. Henry Toke T. Høye Ingibjörg S. Jónsdóttir Kari Klanderud Esther Lévesque Marguerite Mauritz Ulf Molau Susan M. Natali Steven F. Oberbauer Zoe A. Panchen Eric Post Sabine B. Rumpf Niels M. Schmidt Edward A. G. Schuur Phillip R. Semenchuk Tiffany Troxler Jeffrey M. Welker Christian Rixen 《Global Change Biology》2017,23(7):2660-2671
Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high‐latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high‐latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms. 相似文献
4.
Youbing Zhou Chris Newman Jin Chen Zongqiang Xie David W. Macdonald 《Global Change Biology》2013,19(9):2867-2877
Ongoing global climate change is predicted to increase the frequency and magnitude of extreme weather events, impacting population dynamics and community structure. There is, however, a critical lack of case studies considering how climatic perturbations affect biotic interactions. Here, we document how an obligate seed dispersal mutualism was disrupted by a temporally anomalous and meteorologically extreme interlude of unseasonably frigid weather, with accompanying snowstorms, in subtropical China, during January–February 2008. Based on the analysis of 5892 fecal samples (representing six mammalian seed dispersers), this event caused a substantial disruption to the relative seed dispersal function for the raisin tree Hovenia dulcis from prestorm 6.29 (2006) and 11.47 (2007), down to 0.35 during the storm (2008). Crucially, this was due to impacts on mammalian seed dispersers and not due to a paucity of fruit, where 4.63 fruit per branch were available in January 2008, vs. 3.73 in 2006 and 3.58 in 2007. An induced dietary shift occurred among omnivorous carnivores during this event, from the consumption fruit to small mammals and birds, reducing their role in seed dispersal substantially. Induced range shift extinguished the functionality of herbivorous mammals completely, however, seed dispersal function was compensated in part by three omnivorous carnivores during poststorm years, and thus while the mutualism remained intact it was enacted by a narrower assemblage of species, rendering the system more vulnerable to extrinsic perturbations. The storm's extended effects also had anthropogenic corollaries – migrating ungulates becoming exposed to heightened levels of illegal hunting – causing long‐term modification to the seed dispersal community and mutualism dynamics. Furthermore, degraded forests proved especially vulnerable to the storm's effects. Considering increasing climate variability and anthropogenic disturbance, the impacts of such massive, aberrant events warrant conservation concern, while affording unique insights into the stability of mutualisms and the processes that structure biodiversity and mediate ecosystem dynamics. 相似文献
5.
Elisabeth J. Cooper Chelsea J. Little Anna K. Pilsbacher Martin A. Mrsdorf 《植被学杂志》2019,30(5):857-867
6.
Extreme temperatures can injure or kill organisms and can drive evolutionary patterns. Many indices of extremes have been proposed, but few attempts have been made to establish geographic patterns of extremes and to evaluate whether they align with geographic patterns in biological vulnerability and diversity. To examine these issues, we adopt the CLIMDEX indices of thermal extremes. We compute scores for each index on a geographic grid during a baseline period (1961–1990) and separately for the recent period (1991–2010). Heat extremes (temperatures above the 90th percentile during the baseline period) have become substantially more common during the recent period, particularly in the tropics. Importantly, the various indices show weak geographic concordance, implying that organisms in different regions will face different forms of thermal stress. The magnitude of recent shifts in indices is largely uncorrelated with baseline scores in those indices, suggesting that organisms are likely to face novel thermal stresses. Organismal tolerances correlate roughly with absolute metrics (mainly for cold), but poorly with metrics defined relative to local conditions. Regions with high extreme scores do not correlate closely with regions with high species diversity, human population density, or agricultural production. Even though frequency and intensity of extreme temperature events have – and are likely to have – major impacts on organisms, the impacts are likely to be geographically and taxonomically idiosyncratic and difficult to predict. 相似文献
7.
The impact of climate change on strongly age‐structured populations is poorly understood, despite the central role of temperature in determining developmental rates in ectotherms. Here we examine the effect of warming and its interactions with resource availability on the population dynamics of the pyralid moth Plodia interpunctella, populations of which normally show generation cycles, a consequence of strong and asymmetric age‐related competition. Warming by 3°C above the standard culture temperature led to substantial changes in population density, age structure, and population dynamics. Adult populations were some 50% larger in warmed populations, probably because the reduced fecundity associated with warming leads to reduced larval competition, allowing more larvae to develop to adulthood. Warming also interacted with resource availability to alter population dynamics, with the generation cycles typical of this species breaking down in the 30° populations when standard laboratory diet was provided but not when a reduced nutrient poor diet was used. Warming by 6° led to either rapid extinction or the persistence of populations at low densities for the duration of the experiment. We conclude that even moderate warming can have considerable effects on population structure and dynamics, potentially leading to complete changes in dynamics in some cases. These results are particularly relevant given the large number of economically important species that exhibit generation cycling, in many cases arising from similar mechanisms to those operating in P. interpunctella. 相似文献
8.
John E. Drake Mark G. Tjoelker Angelica Vårhammar Belinda E. Medlyn Peter B. Reich Andrea Leigh Sebastian Pfautsch Chris J. Blackman Rosana López Michael J. Aspinwall Kristine Y. Crous Remko A. Duursma Dushan Kumarathunge Martin G. De Kauwe Mingkai Jiang Adrienne B. Nicotra David T. Tissue Brendan Choat Owen K. Atkin Craig V. M. Barton 《Global Change Biology》2018,24(6):2390-2402
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole‐canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. 相似文献
9.
10.
BÉNÉDICTE FABRE DOMINIQUE PIOU MARIE‐LAURE DESPREZ‐LOUSTAU BENOÎT MARÇAIS 《Global Change Biology》2011,17(10):3218-3227
Sphaeropsis shoot blight, caused by Diplodia pinea and Diplodia scrobiculata, damage conifers throughout the world. In France, the first disease outbreaks were reported during the 1990s. The factors associated with the pathogen presence in stands and the relationship between pathogen and disease distributions were analysed in order to understand the Sphaeropsis emergence. Eighty‐two stands of Pinus nigra, Pinus sylvestris, Pinus pinaster and Pinus radiata were visited. Cones were collected on the ground to assess the pathogen frequency. Diplodia spp were isolated and determined by a species‐specific PCR test. The role of potential explaining factors of D. pinea prevalence on cones was analysed by logistic regression. D. pinea was the dominant species in visited stands. The main factors influencing the pathogen presence selected in the models were host species (the pathogen being less frequent on P. pinaster than on P. nigra and P. sylvestris cones), winter temperature and summer rain, which were both positively correlated with cone colonization. The climate became more favourable to D. pinea presence within the last 15 years compared with the previous 30‐year period. By contrast, future climatic changes over the next 40 years should have far less impact on the pathogen presence. 相似文献
11.
Stef Bokhorst Ad Huiskes Rien Aerts Peter Convey Elisabeth J. Cooper Linda Dalen Brigitta Erschbamer Jón Gudmundsson Annika Hofgaard Robert D. Hollister Jill Johnstone Ingibjörg S. Jónsdóttir Marc Lebouvier Bart Van de Vijver Carl‐Henrik Wahren Ellen Dorrepaal 《Global Change Biology》2013,19(1):64-74
Environmental manipulation studies are integral to determining biological consequences of climate warming. Open Top Chambers (OTCs) have been widely used to assess summer warming effects on terrestrial biota, with their effects during other seasons normally being given less attention even though chambers are often deployed year‐round. In addition, their effects on temperature extremes and freeze‐thaw events are poorly documented. To provide robust documentation of the microclimatic influences of OTCs throughout the year, we analysed temperature data from 20 studies distributed across polar and alpine regions. The effects of OTCs on mean temperature showed a large range (?0.9 to 2.1 °C) throughout the year, but did not differ significantly between studies. Increases in mean monthly and diurnal temperature were strongly related (R2 = 0.70) with irradiance, indicating that PAR can be used to predict the mean warming effect of OTCs. Deeper snow trapped in OTCs also induced higher temperatures at soil/vegetation level. OTC‐induced changes in the frequency of freeze‐thaw events included an increase in autumn and decreases in spring and summer. Frequency of high‐temperature events in OTCs increased in spring, summer and autumn compared with non‐manipulated control plots. Frequency of low‐temperature events was reduced by deeper snow accumulation and higher mean temperatures. The strong interactions identified between aspects of ambient environmental conditions and effects of OTCs suggest that a detailed knowledge of snow depth, temperature and irradiance levels enables us to predict how OTCs will modify the microclimate at a particular site and season. Such predictive power allows a better mechanistic understanding of observed biotic response to experimental warming studies and for more informed design of future experiments. However, a need remains to quantify OTC effects on water availability and wind speed (affecting, for example, drying rates and water stress) in combination with microclimate measurements at organism level. 相似文献
12.
Influential factors of global change affect plant carbon uptake and biomass simultaneously. Although the effects from warming and precipitation change have been extensive studied separately, the responses of plant biomass, photosynthesis, and lipid peroxidation to the interaction of these factors are still not fully understood. In this study, we examined the physiological responses of two dominant plant species from grasslands of northern China with different functional traits to combinations of five simulated warming patterns and five simulated precipitation patterns in environment‐controlled chambers. Our results showed that the biomass, net CO2 assimilation rate (Pn), maximal efficiency of photosystem II photochemistry (Fv/Fm), and chlorophyll content (Chl) of Stipa grandis and Leymus chinensis were enhanced by moderate warming and plus precipitation, but they declined drastically with high temperature and drought. High temperature and drought also led to significant malondialdehyde (MDA) accumulation, which had a negative correlation with leaf biomass. The lower level of lipid peroxidation in leaves of S. grandis suggests that this species is better protected from oxidative damage under heat stress, drought stress and their interactive conditions than L. chinensis. Using the subordinate function values method, we found S. grandis to be more sensitive to climate change than L. chinensis and the gross biomass and root biomass of S. grandis and the leaf biomass of L. chinensis were most sensitive to climate change. Furthermore, the Pn of both S. grandis and L. chinensis had a significant linear relationship with Fv/Fm and Chl, indicating that carbon assimilation may be caused by nonstomatal limitations. 相似文献
13.
Do cities simulate climate change? A comparison of herbivore response to urban and global warming 总被引:1,自引:0,他引:1
Elsa Youngsteadt Adam G. Dale Adam J. Terando Robert R. Dunn Steven D. Frank 《Global Change Biology》2015,21(1):97-105
Cities experience elevated temperature, CO2, and nitrogen deposition decades ahead of the global average, such that biological response to urbanization may predict response to future climate change. This hypothesis remains untested due to a lack of complementary urban and long‐term observations. Here, we examine the response of an herbivore, the scale insect Melanaspis tenebricosa, to temperature in the context of an urban heat island, a series of historical temperature fluctuations, and recent climate warming. We survey M. tenebricosa on 55 urban street trees in Raleigh, NC, 342 herbarium specimens collected in the rural southeastern United States from 1895 to 2011, and at 20 rural forest sites represented by both modern (2013) and historical samples. We relate scale insect abundance to August temperatures and find that M. tenebricosa is most common in the hottest parts of the city, on historical specimens collected during warm time periods, and in present‐day rural forests compared to the same sites when they were cooler. Scale insects reached their highest densities in the city, but abundance peaked at similar temperatures in urban and historical datasets and tracked temperature on a decadal scale. Although urban habitats are highly modified, species response to a key abiotic factor, temperature, was consistent across urban and rural‐forest ecosystems. Cities may be an appropriate but underused system for developing and testing hypotheses about biological effects of climate change. Future work should test the applicability of this model to other groups of organisms. 相似文献
14.
15.
Kumar Mainali Bharat Babu Shrestha Ravi Kumar Sharma Arjun Adhikari Eliezer Gurarie Michael Singer Camille Parmesan 《Ecology and evolution》2020,10(3):1209-1222
- Alpine treelines are expected to shift upward due to recent climate change. However, interpretation of changes in montane systems has been problematic because effects of climate change are frequently confounded with those of land use changes. The eastern Himalaya, particularly Langtang National Park, Central Nepal, has been relatively undisturbed for centuries and thus presents an opportunity for studying climate change impacts on alpine treeline uncontaminated by potential confounding factors.
- We studied two dominant species, Abies spectabilis (AS) and Rhododendron campanulatum (RC), above and below the treeline on two mountains. We constructed 13 transects, each spanning up to 400 m in elevation, in which we recorded height and state (dead or alive) of all trees, as well as slope, aspect, canopy density, and measures of anthropogenic and animal disturbance.
- All size classes of RC plants had lower mortality above treeline than below it, and young RC plants (<2 m tall) were at higher density above treeline than below. AS shows little evidence of a position change from the historic treeline, with a sudden extreme drop in density above treeline compared to below. Recruitment, as measured by size–class distribution, was greater above treeline than below for both species but AS is confined to ~25 m above treeline whereas RC is luxuriantly growing up to 200 m above treeline.
- Synthesis. Evidence suggests that the elevational limits of RC have shifted upward both because (a) young plants above treeline benefited from facilitation of recruitment by surrounding vegetation, allowing upward expansion of recruitment, and (b) temperature amelioration to mature plants increased adult survival. We predict that the current pure stand of RC growing above treeline will be colonized by AS that will, in turn, outshade and eventually relegate RC to be a minor component of the community, as is the current situation below the treeline.
16.
Kaho Miyoshi Ricardo S. Hattori Carlos A. Strüssmann Masashi Yokota Yoji Yamamoto 《Molecular ecology》2020,29(13):2349-2358
Several New World atheriniforms have been recognized as temperature‐dependent sex determined (TSD) and yet possess a genotypic sex determinant (amhy) which is primarily functional at mid‐range temperatures. In contrast, little is known about the sex determination in Old World atheriniforms, even though such knowledge is crucial to understand the evolution of sex determination mechanisms in fishes and to model the effects of global warming and climate change on their populations. This study examined the effects of water temperature on sex determination of an Old World atheriniform, the cobaltcap silverside Hypoatherina tsurugae, in which we recently described an amhy homologue. We first assessed the occurrence of phenotypic/genotypic sex mismatches in wild specimens from Tokyo Bay for three years (2014–2016) and used otolith analysis to estimate their birth dates and approximate thermal history during the presumptive period of sex determination. Phenotypic sex ratios became progressively biased towards males (47.3%–78.2%) during the period and were associated with year‐to‐year increases in the frequency of XX‐males (7.3%–52.0%) and decreases in XY/YY‐females (14.5%–0%). The breeding season had similar length but was delayed by about 1 month per year between 2014 and 2016, causing larvae to experience higher temperatures during the period of sex determination from year to year. Larval rearing experiments confirmed increased likelihood of feminization and masculinization at low and high temperatures, respectively. The results suggest that cobaltcap silverside has TSD, or more specifically the coexistence of genotypic and environmental sex determinants, and that it affects sex ratios in wild populations. 相似文献
17.
- Global climate change imposes a serious threat to natural populations of many species. Estimates of the effects of climate change‐mediated environmental stresses are, however, often based only on their direct effects on organisms, and neglect the potential transgenerational (e.g. maternal) effects.
- We tested whether high temperature (i.e. an experimental heatwave), which is known to reduce the performance of adult Lymnaea stagnalis snails, affects the produced offspring (eggs and hatchlings) through maternal effects, and how strong these effects are compared with the effects of direct exposure of offspring to high temperature. We examined the effect of maternal thermal environment (15°C versus 25°C) on per offspring investment (egg size), and the role of both maternal and offspring thermal environments (15°C versus 25°C) on hatching success and developmental time of eggs, offspring survival after hatching, and hatchling size at the age of 5 weeks.
- Exposure of mothers to high temperature reduced the size of oviposited eggs, increased their hatching success, and also made the onset of hatching earlier. However, high maternal temperature reduced the survival and the final size of hatched juveniles. Direct exposure of offspring to high temperature reduced their survival (both eggs and hatchlings) but increased the developmental rate and growth of those individuals that survived. Interestingly, the magnitude of maternal effects on hatching success of eggs and hatchling survival were similar to the direct effects of high temperature.
- Our results indicate that heatwaves can affect natural populations through transgenerational maternal effects and that the magnitude of those effects can be equally strong to the direct effects of temperature, although this depends on the trait considered. These findings highlight the importance of considering the transgenerational effects of climate warming when estimating its effects in the wild.
18.
Rachael Treharne Jarle W. Bjerke Hans Tmmervik Laura Stendardi Gareth K. Phoenix 《Global Change Biology》2019,25(2):489-503
Extreme climatic events are among the drivers of recent declines in plant biomass and productivity observed across Arctic ecosystems, known as “Arctic browning.” These events can cause landscape‐scale vegetation damage and so are likely to have major impacts on ecosystem CO2 balance. However, there is little understanding of the impacts on CO2 fluxes, especially across the growing season. Furthermore, while widespread shoot mortality is commonly observed with browning events, recent observations show that shoot stress responses are also common, and manifest as high levels of persistent anthocyanin pigmentation. Whether or how this response impacts ecosystem CO2 fluxes is not known. To address these research needs, a growing season assessment of browning impacts following frost drought and extreme winter warming (both extreme climatic events) on the key ecosystem CO2 fluxes Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), ecosystem respiration (Reco) and soil respiration (Rsoil) was carried out in widespread sub‐Arctic dwarf shrub heathland, incorporating both mortality and stress responses. Browning (mortality and stress responses combined) caused considerable site‐level reductions in GPP and NEE (of up to 44%), with greatest impacts occurring at early and late season. Furthermore, impacts on CO2 fluxes associated with stress often equalled or exceeded those resulting from vegetation mortality. This demonstrates that extreme events can have major impacts on ecosystem CO2 balance, considerably reducing the carbon sink capacity of the ecosystem, even where vegetation is not killed. Structural Equation Modelling and additional measurements, including decomposition rates and leaf respiration, provided further insight into mechanisms underlying impacts of mortality and stress on CO2 fluxes. The scale of reductions in ecosystem CO2 uptake highlights the need for a process‐based understanding of Arctic browning in order to predict how vegetation and CO2 balance will respond to continuing climate change. 相似文献
19.
Steve D. Albon R. Justin. Irvine Odd Halvorsen Rolf Langvatn Leif E. Loe Erik Ropstad Vebjørn Veiberg René van der Wal Eirin M. Bjørkvoll Elizabeth I. Duff Brage B. Hansen Aline M. Lee Torkild Tveraa Audun Stien 《Global Change Biology》2017,23(4):1374-1389
The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain‐on‐snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between‐year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long‐term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain‐on‐snow’ events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density‐dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic. 相似文献
20.
As temperatures increase in a warming world, there will be different responses among related plant species, with some species able to increase growth rate under warmer conditions and others less likely. Here, we identify survival and growth parameters in a group of 19 related Australian daisies from the genera Brachyscome and Pembertonia when exposed to higher soil temperature, focusing particularly on species from the alpine environment. We used a common garden approach to measure growth and survival under warming. We tested for the effects of evolutionary history by investigating phylogeny and testing for a phylogenetic signal, and for the effects of ecological history by considering climatic variables associated with species distributions in their native range. Evolutionary history did not have a detectable effect on warming responses. While there was a moderate signal for plant growth in the absence of warming, there was no signal for growth changes in response to warming, despite variability among species to warming that ranged from positive to negative growth responses. There was no strong effect of climate context, as species that showed a positive response to warming did not necessarily originate from hotter environments. In fact, several species from hot environments grew relatively poorly when exposed to higher soil temperature. However, species endemic to alpine areas were less likely to benefit from warming than widespread species. We found a strong phylogenetic signal for climate history, in that closely related species tend to occur in areas with similar annual variability in precipitation. Species differences in response to soil warming were variable and difficult to link to climate conditions except for the poor response of alpine endemics. There was no significant association between survival and warming responses of species. However, as some species showed weak growth responses, this may reduce their fitness into the future. 相似文献