首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drivers of population genetic structure are still poorly understood in marine micro‐organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500‐km‐long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low‐salinity Baltic Sea population and a high‐salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone.  相似文献   

2.
It is widely recognized that physical landscapes can shape genetic variation within and between populations. However, it is not well understood how riverscapes, with their complex architectures, affect patterns of neutral genetic diversity. Using a spatially explicit agent‐based modeling (ABM) approach, we evaluate the genetic consequences of dendritic river shapes on local population structure. We disentangle the relative contribution of specific river properties to observed patterns of genetic variation by evaluating how different branching architectures and downstream flow regimes affect the genetic structure of populations situated within river networks. Irrespective of the river length, our results illustrate that the extent of river branching, confluence position, and levels of asymmetric downstream migration dictate patterns of genetic variation in riverine populations. Comparisons between simple and highly branched rivers show a 20‐fold increase in the overall genetic diversity and a sevenfold increase in the genetic differentiation between local populations. Given that most rivers have complex architectures, these results highlight the importance of incorporating riverscape information into evolutionary models of aquatic species and could help explain why riverine fishes represent a disproportionately large amount of global vertebrate diversity per unit of habitable area.  相似文献   

3.
Gene flow may influence the formation of species range limits, and yet little is known about the patterns of gene flow with respect to environmental gradients or proximity to range limits. With rapid environmental change, it is especially important to understand patterns of gene flow to inform conservation efforts. Here we investigate the species range of the selfing, annual plant, Mimulus laciniatus, in the California Sierra Nevada. We assessed genetic variation, gene flow, and population abundance across the entire elevation‐based climate range. Contrary to expectations, within‐population plant density increased towards both climate limits. Mean genetic diversity of edge populations was equivalent to central populations; however, all edge populations exhibited less genetic diversity than neighbouring interior populations. Genetic differentiation was fairly consistent and moderate among all populations, and no directional signals of contemporary gene flow were detected between central and peripheral elevations. Elevation‐driven gene flow (isolation by environment), but not isolation by distance, was found across the species range. These findings were the same towards high‐ and low‐elevation range limits and were inconsistent with two common centre‐edge hypotheses invoked for the formation of species range limits: (i) decreasing habitat quality and population size; (ii) swamping gene flow from large, central populations. This pattern demonstrates that climate, but not centre‐edge dynamics, is an important range‐wide factor structuring M. laciniatus populations. To our knowledge, this is the first empirical study to relate environmental patterns of gene flow to range limits hypotheses. Similar investigations across a wide variety of taxa and life histories are needed.  相似文献   

4.
Detection of population genetic structure of zooplankton at medium‐to‐small spatial scales in the absence of physical barriers has remained challenging and controversial. The large population sizes and high rates of gene flow characteristic of zooplankton have made resolution of geographical differentiation very difficult, especially when using few genetic markers and assuming equilibrium conditions. Next‐generation sequencing now allows simultaneous sampling of hundreds to thousands of genetic markers; new analytical approaches allow studies under nonequilibrium conditions and directional migration. Samples of the North Atlantic Ocean planktonic copepod, Centropages typicus, were analysed using restriction site‐associated DNA (RAD) sequencing on a PROTON platform. Although prior studies revealed no genetic differentiation of populations across the geographical range of the species, analysis of RAD tags showed significant structure across the North Atlantic Ocean. We also compared the likelihood for models of connectivity among NW Atlantic populations under various directional flow scenarios that replicate oceanographic conditions of the sampled domain. High‐density marker sampling with RAD sequencing markedly outperformed other technical and analytical approaches in detection of population genetic structure and characterization of connectivity of this high geneflow zooplankton species.  相似文献   

5.
Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns.  相似文献   

6.
Connectivity and movement patterns of populations are influenced by past and present environmental and biotic factors, which are reflected in genetic relatedness among populations. Methods that estimate the “commute time” between populations based on electrical resistance (i.e., isolation‐by‐resistance [IBR]) have been widely applied to either infer movement patterns directly from environmental factors or detect possible barriers to gene flow given empirical genetic relatedness. Yet, the commute time is only equivalent to the coalescence time between populations under symmetric migration with isotropic landscapes. Asymmetric gene flow is relatively common when populations are expanding, retreating, or with source‐sink dynamics. In a From the Cover paper in this issue of Molecular Ecology Resources, Lundgren and Ralph (Molecular Ecology Resources, 19, 2019) describe a Bayesian method to infer bidirectional gene flow rates and population sizes without the assumption of symmetry. The method shows great accuracy in connectivity estimations under symmetric, as well as asymmetric gene flow scenarios where resistance methods fail. However, computational complexity limits the method to a few populations, preventing its application to finescale environmental maps. Also, as a discrete‐deme static model, the inferred differences in gene flow rates are sensitive to population discretization and cannot be directly used to differentiate among processes (e.g., past expansion vs. current barrier). Here, we discuss scenarios where the new method can best be utilized and provide potential directions to identify the underlying processes causing deviations in gene flow patterns.  相似文献   

7.
Patterns of isolation‐by‐distance (IBD) arise when population differentiation increases with increasing geographic distances. Patterns of IBD are usually caused by local spatial dispersal, which explains why differences of allele frequencies between populations accumulate with distance. However, spatial variations of demographic parameters such as migration rate or population density can generate nonstationary patterns of IBD where the rate at which genetic differentiation accumulates varies across space. To characterize nonstationary patterns of IBD, we infer local genetic differentiation based on Bayesian kriging. Local genetic differentiation for a sampled population is defined as the average genetic differentiation between the sampled population and fictive neighboring populations. To avoid defining populations in advance, the method can also be applied at the scale of individuals making it relevant for landscape genetics. Inference of local genetic differentiation relies on a matrix of pairwise similarity or dissimilarity between populations or individuals such as matrices of between pairs of populations. Simulation studies show that maps of local genetic differentiation can reveal barriers to gene flow but also other patterns such as continuous variations of gene flow across habitat. The potential of the method is illustrated with two datasets: single nucleotide polymorphisms from human Swedish populations and dominant markers for alpine plant species.  相似文献   

8.
Migratory birds generally have higher dispersal propensity than resident species and are thus expected to show less genetic differentiation. On the other hand, specific migration patterns may promote genetic structure, such as in situations where migratory divides impede random mixing of individuals. Here we investigated population genetic structure and gene flow patterns in a polytypic passerine, the reed warbler Acrocephalus scirpaceus which shows a migratory divide in central Europe. Using ten polymorphic microsatellite loci and extensive sampling we found low but significant overall genetic differentiation (FST=0.013, G’ST=0.078, D=0.063). Hierarchical F‐statistics and barrier analyses showed low but significant genetic differentiation of Iberian populations, and also slight genetic differences across the migratory divide and between subspecies (A. s. scirpaceus and A. s. fuscus). Three individual‐based Bayesian methods, however, inferred a single genetic unit. Our study thus found low levels of genetic differentiation among reed warbler populations but this genetic differentiation was not pronounced enough to detect a clear population structure using the microsatellite data and no prior information on geographic location of the sampled individuals. This result indicates high levels of gene flow and suggests a possibly recent divergence of European populations after a rapid range expansion. Further studies are necessary to assess divergence times and to reveal the evolutionary history of the reed warbler populations.  相似文献   

9.
Edh K  Widén B  Ceplitis A 《Molecular ecology》2007,16(23):4972-4983
Nuclear and chloroplast microsatellite markers were used to study population structure and gene flow among seven Cretan populations of the Aegean endemic plant species Brassica cretica (Brassicaceae). Both nuclear and chloroplast markers revealed exceptionally high levels of population differentiation (overall F(ST)=0.628 and 1.000, respectively) and relatively little within-population diversity (overall H(S)=0.211 and 0.000, respectively). Maximum-likelihood estimates of directional migration rates were low among all pairs of populations (average Nm=0.286). There was no evidence that differences in flower colour between populations had any influence on historical levels of gene flow. In addition, a haplotype network showed that all five chloroplast haplotypes found in the sample were closely related. Together, these results suggest that current patterns of diversification in B. cretica are mainly a result of genetic drift during the last half million years. The main conclusions from the present study are consistent with the prevailing hypothesis that plant diversification in the Aegean region is driven by random rather than adaptive differentiation among isolated populations.  相似文献   

10.
Species responses to environmental change are likely to depend on existing genetic and phenotypic variation, as well as evolutionary potential. A key challenge is to determine whether gene flow might facilitate or impede genomic divergence among populations responding to environmental change, and if emergent phenotypic variation is dependent on gene flow rates. A general expectation is that patterns of genetic differentiation in a set of codistributed species reflect differences in dispersal ability. In less dispersive species, we predict greater genetic divergence and reduced gene flow. This could lead to covariation in life‐history traits due to local adaptation, although plasticity or drift could mirror these patterns. We compare genome‐wide patterns of genetic structure in four phenotypically variable grasshopper species along a steep elevation gradient near Boulder, Colorado, and test the hypothesis that genomic differentiation is greater in short‐winged grasshopper species, and statistically associated with variation in growth, reproductive, and physiological traits along this gradient. In addition, we estimate rates of gene flow under competing demographic models, as well as potential gene flow through surveys of phenological overlap among populations within a species. All species exhibit genetic structure along the elevation gradient and limited gene flow. The most pronounced genetic divergence appears in short‐winged (less dispersive) species, which also exhibit less phenological overlap among populations. A high‐elevation population of the most widespread species, Melanoplus sanguinipes, appears to be a sink population derived from low elevation populations. While dispersal ability has a clear connection to the genetic structure in different species, genetic distance does not predict growth, reproductive, or physiological trait variation in any species, requiring further investigation to clearly link phenotypic divergence to local adaptation.  相似文献   

11.
In the past few decades, population genetics and phylogeographic studies have improved our knowledge of connectivity and population demography in marine environments. Studies of deep‐sea hydrothermal vent populations have identified barriers to gene flow, hybrid zones, and demographic events, such as historical population expansions and contractions. These deep‐sea studies, however, used few loci, which limit the amount of information they provided for coalescent analysis and thus our ability to confidently test complex population dynamics scenarios. In this study, we investigated population structure, demographic history, and gene flow directionality among four Western Pacific hydrothermal vent populations of the vent limpet Lepetodrilus aff. schrolli. These vent sites are located in the Manus and Lau back‐arc basins, currently of great interest for deep‐sea mineral extraction. A total of 42 loci were sequenced from each individual using high‐throughput amplicon sequencing. Amplicon sequences were analyzed using both genetic variant clustering methods and evolutionary coalescent approaches. Like most previously investigated vent species in the South Pacific, L. aff. schrolli showed no genetic structure within basins but significant differentiation between basins. We inferred significant directional gene flow from Manus Basin to Lau Basin, with low to no gene flow in the opposite direction. This study is one of the very few marine population studies using >10 loci for coalescent analysis and serves as a guide for future marine population studies.  相似文献   

12.
The estimation and maintenance of connectivity among local populations is an important conservation goal for many species at risk. We used Bayesian statistics and coalescent theory to estimate short- and long-term directional gene flow among subpopulations for two reptiles that occur in Canada as peripheral populations that are geographically disjunct from the core of their respective species’ ranges: the black ratsnake and the Blanding’s turtle. Estimates of directional gene flow were used to examine population connectivity and potential genetic source-sink dynamics. For both species, our estimates of directional short- and long-term gene flow were consistently lower than estimates inferred previously from F ST measures. Short- and long-term gene flow estimates were discordant in both species, suggesting that population dynamics have varied temporally in both species. These estimates of directional gene flow were used to identify specific subpopulations in both species that may be of high conservation value because they are net exporters of individuals to other subpopulations. Overall, our results show that the use of more sophisticated methods to evaluate population genetic data can provide valuable information for the conservation of species at risk, including bidirectional estimates of subpopulation connectivity that rely on fewer assumptions than more traditional analyses. Such information can be used by conservation practitioners to better understand the geographic scope required to maintain a functional metapopulation, determine which habitat corridors within a working landscape may be most important to maintain connectivity among subpopulations, and to prioritize subpopulations with respect to their potential to act as genetic sources within the metapopulation.  相似文献   

13.
The abundant centre hypothesis (ACH) assumes that population abundance, population size, density and per‐capita reproductive output should peak at the centre of a species' geographic range and decline towards the periphery. Increased isolation among and decreased reproductive output within edge populations should reduce within‐population genetic diversity and increase genetic differentiation among edge relative to central populations. The ACH also predicts asymmetrical gene flow, with net movement of migrants from the centre to edges. We evaluated these ecological assumptions and population‐genetic predictions in the endemic flowering plant Leavenworthia stylosa. Although populations were more spatially isolated near range edges, the geographic centre was surrounded by and not coincident with areas of peak population abundance, and plant density increased towards range edges. Per‐capita seed number was not associated with distance to the range centre, but seed number/m2 increased near range edges. In support of ACH predictions, allelic diversity at 12 microsatellite loci declined with distance from the range centre, and pairwise FST values were higher between edge populations than between central populations. Coalescent analyses confirmed that gene flow was most infrequent between edge populations, but there was not an asymmetric pattern of gene flow predicted by the ACH. This study shows that among‐population demographic variability largely did not support the ACH, while patterns of genetic diversity, differentiation and gene flow were generally consistent with its predictions. Such mixed support has frequently been observed in tests of the ACH and raises concerns regarding the generality of this hypothesis for species range limits.  相似文献   

14.
Global climate change poses a serious threat to the future health of coral reef ecosystems. This calls for management strategies that are focused on maximizing the evolutionary potential of coral reefs. Fundamental to this is an accurate understanding of the spatial genetic structure in dominant reef‐building coral species. In this study, we apply a genotyping‐by‐sequencing approach to investigate genome‐wide patterns of genetic diversity, gene flow, and local adaptation in a reef‐building coral, Pocillopora damicornis, across 10 degrees of latitude and a transition from temperate to tropical waters. We identified strong patterns of differentiation and reduced genetic diversity in high‐latitude populations. In addition, genome‐wide scans for selection identified a number of outlier loci putatively under directional selection with homology to proteins previously known to be involved in heat tolerance in corals and associated with processes such as photoprotection, protein degradation, and immunity. This study provides genomic evidence for both restricted gene flow and local adaptation in a widely distributed coral species, and highlights the potential vulnerability of leading‐edge populations to rapid environmental change as they are locally adapted, reproductively isolated, and have reduced levels of genetic diversity.  相似文献   

15.
Understanding the factors determining genetic diversity and structure in peripheral populations is a long‐standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter‐population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.  相似文献   

16.
Little information is available on the extent and patterns of gene flow and genetic diversity between cultivated sorghum and its wild related taxa under local agricultural conditions in Africa. As well as expanding knowledge on the evolutionary and domestication processes for sorghum, such information also has importance in biosafety, conservation and breeding programmes. Here, we examined the magnitude and dynamics of crop–wild gene flow and genetic variability in a crop–wild–weedy complex of sorghum under traditional farming in Meru South district, Kenya. We genotyped 110 cultivated sorghum, and 373 wild sorghum individuals using a panel of ten polymorphic microsatellite loci. We combined traditional measures of genetic diversity and differentiation with admixture analysis, population assignment, and analyses of spatial genetic structure to assess the extent and patterns of gene flow and diversity between cultivated and wild sorghum. Our results indicate that gene flow is asymmetric with higher rates from crop to wild forms than vice versa. Surprisingly, our data suggests that the two congeners have retained substantial genetic distinctness in the face of gene flow. Nevertheless, we found no significant differences in genetic diversity measures between them. Our study also did not find evidence of isolation by distance in cultivated or wild sorghum, which suggests that gene dispersal in the two conspecifics is not limited by geographic distance. Overall our study highlights likely escape and dispersal of transgenes within the sorghum crop–wild–weedy complex if genetically engineered varieties were to be introduced in Africa’s traditional farming systems.  相似文献   

17.
Population genetics and phenotypic structures are often predicted to vary along the geographic range of a species. This phenomenon would be accentuated for species with large range areas, with discontinuities and marginal populations. We herein compare the genetic patterns of central populations of Coccinella septempunctata L. with those of two phenotypically differentiated populations considered as rear‐edge populations and subspecies based on phenotype (Algeria and Japan). According to the central‐marginal model and expected characteristics of rear‐edge populations, we hypothesize that these rear‐edge populations have (1) a reduced genetic diversity, resulting from their relative isolation over long periods of time, (2) a higher population genetic differentiation, explained by low contemporary gene flow levels, and (3) a relationship between genetic diversity characteristics and phenotypes, due to historical isolation and/or local adaptation. Based on genotyping of 28 populations for 18 microsatellite markers, several levels of regional genetic diversity and differentiation are observed between and within populations, according to their localization: low within‐population genetic diversity and higher genetic differentiation of rear‐edge populations. The genetic structuring clearly dissociates the Algerian and Eastern Asia populations from the others. Geographical patterns of genetic diversity and differentiation support the hypothesis of the central‐marginal model. The pattern observed is in agreement with the phenotypic structure across species range. A clear genetic break between populations of Algeria, the Eastern Asia, and the remaining populations is a dominant feature of the data. Differential local adaptations, absence of gene flow between marginal and central populations, and/or incapacity to mate after colonization, have contributed to their distinct genotypic and phenotypic characteristics.  相似文献   

18.
Genetically correlated traits are known to respond to indirect selection pressures caused by directional selection on other traits. It is however unclear how local adaptation in populations diverging along some phenotypic traits but not others is affected by the joint action of gene flow and genetic correlations among traits. This simulation study shows that although gene flow is a potent constraining mechanism of population adaptive divergence, it may induce phenotypic divergence in traits under homogeneous selection among habitats if they are genetically correlated with traits under divergent selection. This correlated phenotypic divergence is a nonmonotonous function of migration and increases with mutational correlation among traits. It also increases with the number of divergently selected traits provided their genetic autonomy relative to the uniformly selected trait is reduced by specific patterns of genetic covariances: populations with lower effective trait dimensionality are more likely to generate very large correlated divergence. The correlated divergence is likely to be picked up by Q(ST)-F(ST) analysis of population genetic differentiation and be erroneously ascribed to adaptive divergence under divergent selection. This study emphasizes the necessity to understand the interaction between selection and the genetic basis of adaptation in a multivariate rather than univariate context.  相似文献   

19.
During speciation‐with‐gene‐flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome‐wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome‐wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation‐with‐gene‐flow mechanism.  相似文献   

20.
Genetic studies of recently established populations are challenging because the assumption of equilibrium underlying many analyses is likely to be violated. Using microsatellites, we investigated determinants of genetic structure and migration among invasive European-Chinese mitten crab populations, applying a combination of traditional population genetic analyses and nonequilibrium Bayesian methods. Consistent with their recent history, invasive populations showed much lower levels of genetic diversity than a native Chinese population, indicative of recent bottlenecks. Population differentiation was generally low but significant and especially pronounced among recently established populations. Significant differentiation among cohorts from the same geographical location (River Thames) suggests the low effective population size and associated strong genetic drift that would be anticipated from a very recent colonization. An isolation-by-distance pattern appears to be driven by an underlying correlation between geographical distance and population age, suggesting that cumulative homogenizing gene flow reduces founder bottleneck-associated genetic differentiation between longer-established populations. This hypothesis was supported by a coalescent analysis, which supported a drift + gene flow model as more likely than a model excluding gene flow. Furthermore, admixture analysis identified several recent migrants between the UK and Continental European population clusters. Admixture proportions were significantly predicted by the volume of shipping between sites, indicating that human-mediated transport remains a significant factor for dispersal of mitten crabs after the initial establishment of populations. Our study highlights the value of nonequilibrium methods for the study of invasive species, and also the importance of evaluating nonequilibrium explanations for isolation by distance patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号