首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laboratory trials conducted over the past decade at U.S. Geological Survey National Wildlife Health Center indicate that wild populations of prairie dogs (Cynomys spp.) display different degrees of susceptibility to experimental challenge with fully virulent Yersinia pestis, the causative agent of plague. We evaluated patterns in prairie dog susceptibility to plague to determine whether the historical occurrence of plague at location of capture was related to survival times of prairie dogs challenged with Y. pestis. We found that black‐tailed prairie dogs (Cynomys ludovicianus) from South Dakota (captured prior to the detection of plague in the state), Gunnison's prairie dogs (Cynomys gunnisoni) from Colorado, and Utah prairie dogs (Cynomys parvidens) from Utah were most susceptible to plague. Though the susceptibility of black‐tailed prairie dogs in South Dakota compared with western locations supports our hypothesis regarding historical exposure, both Colorado and Utah prairie dogs have a long history of exposure to plague. It is possible that for these populations, genetic isolation/bottle necks have made them more susceptible to plague outbreaks.  相似文献   

2.
Grooming is a common animal behavior that aids in ectoparasite defense. Ectoparasites can stimulate grooming, and natural selection can also favor endogenous mechanisms that evoke periodic bouts of “programmed” grooming to dislodge or kill ectoparasites before they bite or feed. Moreover, grooming can function as a displacement or communication behavior. We compared the grooming behaviors of adult female black‐tailed prairie dogs (Cynomys ludovicianus) on colonies with or without flea control via pulicide dust. Roughly 91% of the prairie dogs sampled on the non‐dusted colony carried at least one flea, whereas we did not find fleas on two dusted colonies. During focal observations, prairie dogs on the non‐dusted colony groomed at higher frequencies and for longer durations than prairie dogs on the dusted colonies, lending support to the hypothesis that fleas stimulated grooming. However, the reduced amount of time spent grooming on the dusted colonies suggested that approximately 25% of grooming might be attributed to factors other than direct stimulation from ectoparasites. Non‐dusted colony prairie dogs rarely autogroomed when near each other. Dusted colony prairie dogs autogroomed for shorter durations when far from a burrow opening (refuge), suggesting a trade‐off between self‐grooming and antipredator defense. Allogrooming was detected only on the non‐dusted colony and was limited to adult females grooming young pups. Grooming appears to serve an antiparasitic function in C. ludovicianus. Antiparasitic grooming might aid in defense against fleas that transmit the plague bacterium Yersinia pestis. Plague was introduced to North America ca. 1900 and now has a strong influence on most prairie dog populations, suggesting a magnified effect of grooming on prairie dog fitness.  相似文献   

3.
The black‐tailed prairie dog (Cynomys ludovicianus) is a keystone species on the mid‐ and short‐grass prairies of North America. The species has suffered extensive colony extirpations and isolation as a result of human activity including the introduction of an exotic pathogen, Yersinia pestis, the causative agent of sylvatic plague. The prairie dog flea, Oropsylla hirsuta, is the most common flea on our study colonies in north‐central Montana and it has been shown to carry Y. pestis. We used microsatellite markers to estimate the level of population genetic concordance between black‐tailed prairie dogs and O. hirsuta in order to determine the extent to which prairie dogs are responsible for dispersing this potential plague vector among prairie dog colonies. We sampled fleas and prairie dogs from six prairie dog colonies in two regions separated by about 46 km. These colonies were extirpated by a plague epizootic that began months after our sampling was completed in 2005. Prairie dogs showed significant isolation‐by‐distance and a tendency toward genetic structure on the regional scale that the fleas did not. Fleas exhibited higher estimated rates of gene flow among prairie dog colonies than the prairie dogs sampled from the same colonies. While the findings suggested black‐tailed prairie dogs may have contributed to flea dispersal, we attributed the lack of concordance between the population genetic structures of host and ectoparasite to additional flea dispersal that was mediated by mammals other than prairie dogs that were present in the prairie system.  相似文献   

4.
The Utah prairie dog (Cynomys parvidens), listed as threatened under the United States Endangered Species Act, was the subject of an extensive eradication program throughout its range during the 20th century. Eradication campaigns, habitat destruction/fragmentation/conversion, and epizootic outbreaks (e.g., sylvatic plague) have reduced prairie dog numbers from an estimated 95,000 individuals in the 1920s to approximately 14,000 (estimated adult spring count) today. As a result of these anthropogenic actions, the species is now found in small isolated sets of subpopulations. We characterized the levels of genetic diversity and population genetic structure using 10 neutral nuclear microsatellite loci for twelve populations (native and transplanted) representative of the three management designated “recovery units,” found in three distinct biogeographic regions, sampled across the species' range. The results indicate (1) low levels of genetic diversity within colonies (He = 0.109–0.357; Ho = 0.106‐ 0.313), (2) high levels of genetic differentiation among colonies (global FST = 0.296), (3) very small genetic effective population sizes, and (4) evidence of genetic bottlenecks. The genetic data reveal additional subdivision such that colonies within recovery units do not form single genotype clusters consistent with recovery unit boundaries. Genotype cluster membership support historical gene flow among colonies in the easternmost West Desert Recovery Unit with the westernmost Pausaugunt colonies and among the eastern Pausaugunt colonies and the Awapa Recovery unit to the north. In order to maintain the long‐term viability of the species, there needs to be an increased focus on maintaining suitable habitat between groups of existing populations that can act as connective corridors. The location of future translocation sites should be located in areas that will maximize connectivity, leading to maintenance of genetic variation and evolutionary potential.  相似文献   

5.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

6.
Scanning genomes for loci with high levels of population differentiation has become a standard of population genetics. FST outlier loci are most often interpreted as signatures of local selection, but outliers might arise for many other reasons too often left unexplored. Here, we tried to identify further the history and genetic basis underlying strong differentiation at FST outlier loci in a marine mussel. A genome scan of genetic differentiation has been conducted between Atlantic and Mediterranean populations of Mytilus galloprovincialis. The differentiation was low overall (FST = 0.03), but seven loci (2%) were strong FST outliers. We then analysed DNA sequence polymorphism at two outlier loci. The genetic structure proved to be the consequence of differential introgression of alleles from the sister‐hybridizing species Mytilus edulis. Surprisingly, the Mediterranean population was the most introgressed at these two loci, although the contact zone between the two species is nowadays localized along the Atlantic coasts of France and the British Isles. A historical contact between M. edulis and Mediterranean M. galloprovincialis should have happened during glacial periods. It proved difficult to disentangle two hypotheses: (i) introgression was adaptive, implying edulis alleles have been favoured in Mediterranean populations, or (ii) the genetic architecture of the barrier to edulis gene flow is different between the two M. galloprovincialis backgrounds. Five of the seven outliers between M. galloprovincialis populations were also outliers between M. edulis and Atlantic M. galloprovincialis, which would support the latter hypothesis. Differential introgression across semi‐permeable barriers to gene flow is a neglected scenario to interpret outlying loci that may prove more widespread than anticipated.  相似文献   

7.
Genetic variability and structure of nine black-tailed prairie dog (BTPD, Cynomys ludovicianus) colonies were estimated with 15 unlinked microsatellite markers. A plague epizootic occurred between the first and second years of sampling and our study colonies were nearly extirpated with the exception of three colonies in which prairie dog burrows were previously dusted with an insecticide, deltamethrin, used to control fleas (vectors of the causative agent of plague, Yersinia pestis). This situation provided context to compare genetic variability and structure among dusted and non-dusted colonies pre-epizootic, and among the three dusted colonies pre- and post-epizootic. We found no statistical difference in population genetic structures between dusted and non-dusted colonies pre-epizootic. On dusted colonies, gene flow and recent migration rates increased from the first (pre-epizootic) year to the second (post-epizootic) year which suggested dusted colonies were acting as refugia for prairie dogs from surrounding colonies impacted by plague. Indeed, in the dusted colonies, estimated densities of adult prairie dogs (including dispersers), but not juveniles (non-dispersers), increased from the first year to the second year. In addition to preserving BTPDs and many species that depend on them, protecting colonies with deltamethrin or a plague vaccine could be an effective method to preserve genetic variability of prairie dogs.  相似文献   

8.
Sylvatic plague (Yersinia pestis) was introduced into North America over 100 years ago. The disease causes high mortality and extirpations in black-tailed prairie dogs (Cynomys ludovicianus), which is of conservation concern because prairie dogs provide habitat for the critically endangered black-footed ferret (Mustela nigripes). Our goal was to help elucidate the mechanism Y. pestis uses to persist in prairie ecosystems during enzootic and epizootic phases. We used a nested PCR protocol to assay for plague genomes in fleas collected from prairie dog burrows potentially exposed to plague in 1999 and 2000. No active plague epizootic was apparent in the 55 prairie dog colonies sampled in 2002 and 2003. However, 63% of the colonies contained plague-positive burrows in 2002, and 57% contained plague-positive burrows in 2003. Within plague-positive colonies, 23% of sampled burrows contained plague-positive fleas in 2002, and 26% contained plague-positive fleas in 2003. Of 15 intensively sampled colonies, there was no relationship between change in colony area and percentage of plague-positive burrows over the two years of the study. Some seasonality in plague prevalence was apparent because the highest percentages of plague-positive colonies were recorded in May and June. The surprisingly high prevalence of plague on study area colonies without any obvious epizootic suggested that the pathogen existed in an enzootic state in black-tailed prairie dogs. These findings have important implications for the management of prairie dogs and other species that are purported to be enzootic reservoir species.  相似文献   

9.
Plague, caused by the bacterium Yersinia pestis, triggers die-offs in colonies of black-tailed prairie dogs (Cynomys ludovicianus), but the time-frame of plague activity is not well understood. We document plague activity in fleas from prairie dogs and their burrows on three prairie dog colonies that suffered die-offs. We demonstrate that Y. pestis transmission occurs over periods from several months to over a year in prairie dog populations before observed die-offs.  相似文献   

10.
Sylvatic plague (Yersinia pestis) is an exotic pathogen that is highly virulent in black-tailed prairie dogs (Cynomys ludovicianus) and causes widespread colony losses and individual mortality rates >95%. We investigated colony spatial characteristics that may influence inter-colony transmission of plague at 3 prairie dog colony complexes in the Great Plains. The 4 spatial characteristics we considered include: colony size, Euclidean distance to nearest neighboring colony, colony proximity index, and distance to nearest drainage (dispersal) corridor. We used multi-state mark–recapture models to determine the relationship between these colony characteristics and probability of plague transmission among prairie dog colonies. Annual mapping of colonies and mark–recapture analyses of disease dynamics in natural colonies led to 4 main results: 1) plague outbreaks exhibited high spatial and temporal variation, 2) the site of initiation of epizootic plague may have substantially influenced the subsequent inter-colony spread of plague, 3) the long-term effect of plague on individual colonies differed among sites because of how individuals and colonies were distributed, and 4) colony spatial characteristics were related to the probability of infection at all sites although the relative importance and direction of relationships varied among sites. Our findings suggest that conventional prairie dog conservation management strategies, including promoting large, highly connected colonies, may need to be altered in the presence of plague. © 2011 The Wildlife Society  相似文献   

11.
The wild boar is an ancestor of the domestic pig and an important game species with the widest geographical range of all ungulates. Although a large amount of data are available on major histocompatibility complex (MHC) variability in domestic pigs, only a few studies have been performed on wild boars. Due to their crucial role in appropriate immune responses and extreme polymorphism, MHC genes represent some of the best candidates for studying the processes of adaptive evolution. Here, we present the results on the variability and evolution of the entire MHC class II SLA‐DRB1 locus exon 2 in 133 wild boars from Croatia. Using direct sequencing and cloning methods, we identified 20 SLA‐DRB1 alleles, including eight new variants, with notable divergence. In some individuals, we documented functional locus duplication, and SLA‐DRB1*04:10 was identified as the allele involved in the duplication. The expression of a duplicated locus was confirmed by cloning and sequencing cDNA‐derived amplicons. Based on individual genotypes, we were able to assume that alleles SLA‐DRB1*04:10 and SLA‐DRB1*06:07 are linked as an allelic combination that co‐evolves as a two‐locus haplotype. Our investigation of evolutionary processes at the SLA‐DRB1 locus confirmed the role of intralocus recombination in generating allelic variability, whereas tests of positive selection based on the dN/dS (non‐synonymous/synonymous substitution rate ratio) test revealed atypically weak and ambiguous signals.  相似文献   

12.
Sequence polymorphism at the MHC class II DRB locus was investigated in three finless porpoise (Neophocaena phocaenoides) populations in Chinese waters. Intragenic recombination and strong positive selection were the main forces in generating sequence diversity in the DRB gene. MHC sequence diversity changed significantly along the study period. Significant decrease in heterozygosity and lost alleles have been detected in the Yangtze River population and South China Sea population since 1990. Furthermore, there is a trend of increasing population differentiation over time. Especially, the genetic differentiation between the Yangtze River population and the Yellow Sea population was very low prior to 1990 (F ST = 0.036, P = 0.009), but became very significant after 1990 (F ST = 0.134, P < 0.001), suggesting a recent augmentation of genetic differentiation between both populations probably in a relatively short-term period. Porpoises from the Yangtze River displayed divergent frequencies of shared and private alleles from those displayed by two marine populations, which suggest that the former riverine population has been under a different selection regime (characteristic of a fresh water environment) than that of its marine counterparts.  相似文献   

13.
Yersinia pestis, a bacterial pathogen that causes sylvatic plague, is present in the prairie dogs (Cynomys spp.) of North America. Epizootics of sylvatic plague through transmission in vectors (fleas) commonly completely extirpate colonies of prairie dogs. Wildlife managers employ a wide variety of insecticidal treatments to suppress plague and conserve prairie dog colonies. I compiled and statistically compared the available literature describing methods of plague control and their relative effectiveness in managing plague outbreaks by using meta‐analyses. Natural log response ratios were used to calculate insecticide‐induced vector mortality and vaccine‐conferred survival increases in prairie dogs in 37 publications. Further, subgroupings were used to explore the most effective of the available vector suppression insecticides and plague suppression vaccines. After accounting for the type of treatment used and the method by which it was applied, I observed plague reduction through use of both insecticides and vaccines. Insecticides resulted in a significant reduction of the abundance of vectors by 91.34% compared to non‐treated hosts (p<0.0001). Vaccines improved survival of prairie dog hosts by 4.00% (p<0.0001) compared to control populations. The use of insecticides such as deltamethrin and carbaryl is recommended to stop actively spreading epizootics, and dual antigen oral vaccines to initially suppress outbreaks.  相似文献   

14.
The arctic phytoplankton spring bloom, which is often diatom‐dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample‐specific FST) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample‐specific FST. On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population.  相似文献   

15.
Seasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple regionally distant areas. Migrant populations of Helicoverpa zea (Boddie) captured during two different seasons were assessed for genetic structure using microsatellite markers and for host plant type using stable carbon isotope analysis. Individuals (N = 568) were genotyped and divided into 13 putative populations based on collection site and time. Fixation indices (F‐statistics), analysis of molecular variance (AMOVA), and discriminant analysis of principal components (DAPC) were used to examine within and among population genetic variation. Mean number of alleles per locus was 10.25 (± 3.2 SD), and allelic richness ranged from 2.38 to 5.13 (± 3.2 SD). The observed and expected heterozygosity ranged from 0.07 to 0.48 and 0.08 to 0.62, respectively. Low FST (0.01 to 0.02) and high FIS (0.08 to 0.33) values suggest captured migrants originated from breeding populations with different allele frequencies. We postulate that high genetic diversity within migrant populations and low genetic differentiation among migrant populations of H. zea are the result of asymmetrical immigration due to the high dispersal and reproductive behavior of H. zea, which may hinder the adaptation and establishment of H. zea to peripheral habitat. These findings highlight the importance of assessing peripheral population structure in relation to ecological and evolutionary dynamics of this and other highly reproductive and dispersive species.  相似文献   

16.
Habitat fragmentation may influence the genetic make-up and adaptability of endangered populations. To facilitate genetic monitoring of the endangered European ground squirrel (EGS), we analyzed 382 individuals from 16 populations in Central Europe, covering almost half of its natural range. We tested how fragmentation affects the genetic architecture of presumably selectively neutral (12 microsatellites) and non-neutral (the major histocompatibility class II DRB gene) loci. Spatial genetic analyses defined two groups of populations, “western” and “eastern”, with a significantly higher level of habitat fragmentation in the former group. The highly fragmented western populations had significantly lower genetic diversity in both types of markers. Only one allele of the DRB gene predominated in populations of the western group, while four alleles were evenly distributed across the eastern populations. Coefficient of inbreeding values (F IS) calculated from microsatellites were significantly higher in the western (0.27–0.79) than in eastern populations (−0.060–0.119). Inter-population differentiation was very high, but similar in both groups (western F ST = 0.23, eastern F ST = 0.25). The test of isolation by distance was significant for the whole dataset, as well as for the two groups analyzed separately. Comparison of genetic variability and structure on microsatellites and the DRB gene does not provide any evidence for contemporary selection on MHC genes. We suggest that genetic drift in small bottlenecked and fragmented populations may overact the role of balancing selection. Based on the resulting risk of inbreeding depression in the western populations, we support population management by crossbreeding between the western and eastern populations.  相似文献   

17.
18.
Human plague risks (Yersinia pestis infection) are greatest when epizootics cause high mortality among this bacterium's natural rodent hosts. Therefore, health departments in plague‐endemic areas commonly establish animal‐based surveillance programs to monitor Y. pestis infection among plague hosts and vectors. The primary objectives of our study were to determine whether passive animal‐based plague surveillance samples collected in Colorado from 1991 to 2005 were sampled from high human plague risk areas and whether these samples provided information useful for predicting human plague case locations. By comparing locations of plague‐positive animal samples with a previously constructed GIS‐based plague risk model, we determined that the majority of plague‐positive Gunnison's prairie dogs (100%) and non‐prairie dog sciurids (85.82%), and moderately high percentages of sigmodontine rodents (71.4%), domestic cats (69.3%), coyotes (62.9%), and domestic dogs (62.5%) were recovered within 1 km of the nearest area posing high peridomestic risk to humans. In contrast, the majority of white‐tailed prairie dog (66.7%), leporid (cottontailed and jack rabbits) (71.4%), and black‐tailed prairie dog (93.0%) samples originated more than 1 km from the nearest human risk habitat. Plague‐positive animals or their fleas were rarely (one of 19 cases) collected within 2 km of a case exposure site during the 24 months preceding the dates of illness onset for these cases. Low spatial accuracy for identifying epizootic activity prior to human plague cases suggested that other mammalian species or their fleas are likely more important sources of human infection in high plague risk areas. To address this issue, epidemiological observations and multi‐locus variable number tandem repeat analyses (MLVA) were used to preliminarily identify chipmunks as an under‐sampled, but potentially important, species for human plague risk in Colorado.  相似文献   

19.
Leptosphaeria maculans is the most important fungal pathogen of canola (Brassica napus, oilseed rape) that causes the devastating stem canker in canola fields of western Canada. The population genetic structure of L. maculans, represented by nine subpopulations from a 6‐year period and three different provinces in western Canada, was determined using ten minisatellite markers. Isolates collected at different locations in six consecutive years had an even distribution of MAT1‐1 and MAT1‐2 across the nine subpopulations. All subpopulations of L. maculans exhibited a moderate gene diversity (= 0.356–0.585). The majority of the genetic variation occurred within subpopulations. Approximately 8% and 4% of the variations were distributed between sampling year and location, respectively. Genetic distance (FST) results, using analysis of molecular variation (AMOVA), indicated that subpopulation pairing within isolates by year ranged from FST = 0.010 to 0.109, and the location subpopulation ranged from FST = 0.038 to 0.085. Bayesian clustering analyses of multiloci inferred two distinct clusters in all the subpopulations examined. This study indicates a relatively high degree of gene exchange between the different L. maculans isolates. Our results suggest that this can occur in the wide growing areas of canola fields in western Canada. This gene exchange produced different gene allele frequencies and divergence between populations.  相似文献   

20.

Aim

Tapinoma melanocephalum is listed as one of the most important invasive pest species in China. Information regarding the patterns of invasion and effects of geographic isolation on the population genetics of this species is largely lacking.

Location

South China.

Methods

To address this problem, we genotyped 39 colonies (two colonies were collapsed due to genetic similarity) using microsatellite markers and mitochondrial DNA sequencing to compare colony genetic structure of T. melanocephalum on the mainland and islands of South China.

Results

An analysis of the colony genotypes showed that the genetic diversity of the mainland population was slightly higher than that of the island populations but not significantly so. However, the observed heterozygosity on Shangchuan Island (SCD) was significantly lower than that of the other colonies. We also found six haplotypes in 111 mitochondrial DNA COI sequences. The relatedness (r) value between colonies of SCD was 0.410, higher than that of the other populations. The genetic clusters among colonies were not related to geographic locations and exhibited admixture likely due to frequent human‐mediated dispersal associated with trade between the mainland population and the islands. Pairwise FSTs between populations showed differentiation among mainland populations, while SCD displayed high levels of divergence (FST > 0.15) from most mainland populations. There was no significant isolation by distance among colonies. Most populations showed signs of a bottleneck effect.

Main conclusions

Our study suggests that there was no significant difference in the genetic diversity among the islands and the mainland; however, the lower genetic diversity, the higher degree of genetic divergence from other colonies, and the higher relatedness among nestmates made the SCD population stand out from all the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号