首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel approach for the simultaneous optical and electrochemical detection of biologically produced reactive oxygen species has been developed and applied. The set-up consists of a luminol-dependent chemiluminescence assay combined with two amperometric biosensors sensitive to superoxide anion radicals (O(2)(-)) and hydrogen peroxide (H(2)O(2)), respectively. The method permits direct, real-time in vitro determination of both extra- and intracellular O(2)(-) and H(2)O(2) produced by human neutrophil granulocytes. The rate of O(2)(-) production by stimulated neutrophils was calculated to about 10(-17)mol s(-1) per single cell. With inhibited NADPH oxidase, a distinct extracellular release of H(2)O(2) instead of O(2)(-) was obtained from stimulated neutrophils with the rate of about 3 x 10(-18)mol s(-1) per single cell. When the H(2)O(2) release was discontinued, fast H(2)O(2) utilisation was observed. Direct interaction with and possibly attachment of neutrophils to redox protein-modified gold electrodes, resulted in a spontaneous respiratory burst in the population of cells closely associated to the electrode surface. Hence, further stimulation of human neutrophils with a potent receptor agonist (fMLF) did not significantly increase the O(2)(-) sensitive amperometric response. By contrast, the H(2)O(2) sensitive biosensor, based on an HRP-modified graphite electrode, was able to reflect the bulk concentration of H(2)O(2), produced by stimulated neutrophils and would be very useful in modestly equipped biomedical research laboratories. In summary, the system would also be appropriate for assessment of several other metabolites in different cell types, and tissues of varying complexity, with only minor electrode modifications.  相似文献   

2.
Hemoglobin (Hb) is immobilized with cadmium sulfide (CdS) nanoparticles (NPs) on pyrolytic graphite (PG) electrode to characterize the electrochemical reactivity and peroxidase activity of the protein. The result demonstrates that fine redox waves of Hb can be achieved after this protein is entrapped in CdS NPs. Meanwhile, the protein can exhibit nice catalytic activity towards hydrogen peroxide (H2O2). Linear relationship between the reductive peak current and the H2O2 concentration has been obtained from 5.0 x 10(-6) to 4.0 x 10(-4) mol/L, on the basis of which a new kind of H2O2 biosensor might be developed in the future.  相似文献   

3.
The rapid release of H2O2 by elicited plant cells, recently termed the oxidative burst, was investigated in suspension-cultured soybean (Glycine max Merr. cv Kent) cells stimulated with a purified polygalacturonic acid (PGA) elicitor. Examination of the elicited cells by fluorescence microscopy revealed that virtually every living cell participates in the elicitor-induced H2O2 burst. Measurement of the kinetics of the response using a macroscopic fluorescence-based assay indicated that approximately 100 molecules of H2O2 are generated per PGA molecule added, achieving a cumulative H2O2 concentration of approximately 1.2 mmol L-1 of packed cells. At the height of the defense response, 3 x 10-14 mol of H2O2 cell-1 min-1 are produced, a value comparable to the rate of H2O2 production by myeloid cells of mammals. Variables affecting the rate and magnitude of the soybean oxidative burst were found to be mechanical stress, extracellular pH, and cell age. The PGA-induced oxidative burst was shown to undergo both homologous and heterologous desensitization, a characteristic of signal transduction pathways in animals. Homologous desensitization was obtained with PGA, and heterologous desensitization was observed with the G protein activator mastoparan, consistent with earlier observations showing that G proteins perform a regulatory function in this pathway. Finally, a model describing the possible role of the PGA-induced oxidative burst in the overall scheme of plant defense is proposed.  相似文献   

4.
过氧化氢可抑制藻类生长, 同时会导致微囊藻毒素(Microcystins, MCs)的释放, 实验设置4个处理组探讨了外源微囊藻毒素MC-LR对H2O2胁迫下铜绿微囊藻生理生化变化的影响。结果表明: 在H2O2胁迫下, 微囊藻的生长和光合活性受到显著抑制, 藻细胞存活率降低, ROS含量明显增加, SOD活性上升。与单独H2O2胁迫相比, 加入MC-LR能增加微囊藻细胞的存活率。250 mol/L H2O2处理24h和48h后, 在培养基中加入200 ng/mL MC-LR可以缓解H2O2对铜绿微囊藻光合系统PSII活性的抑制作用。当微囊藻暴露于250 mol/L H2O2环境中时, 添加了MC-LR处理组藻细胞中的ROS含量明显减少(P0.05)。在相同浓度H2O2且加入了外源MC-LR后藻细胞SOD活性下降(P0.05)。因此, 微囊藻毒素MC-LR可缓解250 mol/L H2O2引起的氧化损伤并增强微囊藻自身的生存能力。研究结果有利于阐明H2O2胁迫影响产毒蓝藻生长代谢的途径及MCs生物学意义。    相似文献   

5.
The distribution of basal and of H2O2-stimulated cyclooxygenase activity in the primary fractions of rat brain homogenates and in the subfractions of crude mitochondrial fraction was studied. For comparison, the localization of H2O2-generating monoamine oxidase (MAO) as well as that of the mitochondrial marker succinate dehydrogenase (SDH) was also examined. H2O2 was generated by MAO using 5 x 10(-4) M noradrenaline (NA) or 2 x 10(-4) M 2-phenylethylamine (PEA) as substrates, or by 25 micrograms glucose oxidase (GOD) per ml in the presence of 1 mM glucose. For nonstimulated (basal) cyclooxygenase, the relative specific activity (RSA) was high in microsomes (1.79) and in the free mitochondria-containing subfraction of the crude mitochondrial fraction (1.94). Parallel distribution of MAO and H2O2-stimulated cyclooxygenase was observed in all fractions studied in the presence of NA. The highest RSA was found in the purified mitochondria for both enzymes (1.85 for MAO and 1.97 for H2O2-stimulated cyclooxygenase). The enrichment of SDH (RSA = 2.21) indicated a high concentration of mitochondria in this fraction. The same distribution of H2O2-stimulated cyclooxygenase was obtained when, instead of the MAO-NA system, hydrogen peroxide was generated by GOD in the presence of glucose. H2O2 generated by deamination of NA or PEA by MAO, or during the enzymatic oxidation of glucose by GOD, caused a threefold increase in mitochondrial endoperoxide formation. Indomethacin (2 x 10(-4) M), catalase (50 micrograms/ml), and pargyline (2 x 10(-4) M) eliminated the MAO-dependent mitochondrial synthesis of PG endoperoxides. The GOD-dependent cyclooxygenase activity in this fraction was abolished by indomethacin or catalase, but not by pargyline. The results show the existence of a mitochondrial cyclooxygenase in brain tissue. The enzyme is sensitive to H2O2 and produces prostaglandin endoperoxides from an endogenous source of arachidonic acid. The identical localization of H2O2-producing MAO and H2O2-sensitive cyclooxygenase suggests a possible coupling between monoamine and arachidonic acid metabolism.  相似文献   

6.
7.
A novel hydrogen peroxide biosensor was fabricated for the determination of H(2)O(2). The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H(2)O(2) in the linear range from 2.6 x 10(-6) mol/L to 8.8 x 10(-3) mol/L with a detection limit of 6.4 x 10(-7) mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

8.
免疫反应细胞经呼吸瀑布作用产生的活性氧是巨噬细胞促炎细胞因子和趋化因子表达的信号分子,但目前缺乏过氧化氢(H2O2)刺激巨噬细胞表达促炎细胞因子和趋化因子的直接证据.本研究以离体培养的小鼠RAW264.7巨噬细胞为研究体系,探讨外源H2O2对RAW264.7巨噬细胞促炎因子和趋化因子基因表达和生成的影响.MTT法结合实时荧光定量PCR(qRT-PCR)、酶联免疫吸附试验(ELISA)结果显示,RAW264.7细胞在H2O2浓度低于40 μmol/L时不影响RAW264.7细胞的增殖活力.20 μmol/L和40 μmol/L H2O2显著增强RAW264.7细胞TNF-α、IL-1β、MCP-1和MIP-2基因转录和蛋白质生成,并存在剂量依赖效应;而200 U/mL过氧化氢酶预处理则可减弱由H2O2刺激的TNF-α、IL-1β、MCP-1和MIP-2基因表达和蛋白生成.这些结果提示,H2O2是刺激巨噬细胞促炎因子和趋化因子表达或生成的重要因子,对机体炎症反应的发生具有重要作用.  相似文献   

9.
Dai Z  Xu X  Ju H 《Analytical biochemistry》2004,332(1):23-31
The direct electrochemistry of myoglobin (Mb) immobilized on a hexagonal mesoporous silica (HMS)-modified glassy carbon electrode was described. The interaction between Mb and HMS was investigated by using Fourier transfer infrared spectroscopy, nitrogen adsorption isotherm, and cyclic voltammetry. Two couples of redox peaks corresponding to Fe(III) to Fe(II) conversion of the Mb intercalated in the mesopores and adsorbed on the surface of the HMS were observed with the formal potentials of -0.167 and -0.029V in 0.1M, pH 7.0, phosphate buffer solution, respectively. The electrode reaction showed a surface-controlled process with one proton transfer. The immobilized Mb displayed good electrocatalytic responses to the reduction of both hydrogen peroxide (H(2)O(2)) and nitrite (NO(2)(-)), which were used to develop novel sensors for H(2)O(2) and NO(2)(-). The apparent Michaelis-Menten constants of the immobilized Mb for H(2)O(2) and NO(2)(-) were 0.065 and 0.72mM, respectively, showing good affinity. Under optimal conditions, the sensors could be used for the determinations of H(2)O(2) ranging from 4.0 to 124microM and NO(2)(-) ranging from 8.0 to 216microM. The detection limits were 6.2x10(-8) and 8.0x10(-7)M at 3 sigma, respectively. The HMS provided a novel matrix for protein immobilization and the construction of biosensors via the direct electron transfer of immobilized protein.  相似文献   

10.
Acute Chagas' disease triggers potent inflammatory reaction characterized by great increase of peripheral blood monocyte (PBM) and macrophage numbers. We studied the respiratory burst responses of PBM and peritoneal and splenic macrophages to in vivo infection (rats). The ultrastructure of heart inflammatory macrophages was also investigated. The infection increased the hydrogen peroxide (H2O2) production by PBM and splenic macrophages but not by peritoneal macrophages. Accordingly, the PBM and spleen cell numbers increased but the total number of peritoneal cells was similar to controls. Heart macrophages of infected rats exhibited increase (number and size) and activated morphology in parallel to high cardiomyocyte parasitism. Our data highlight the importance of innate immunity and H2O2production to host resistance during acute phase of T. cruzi infection. A novel finding is that H2O2production seems related to specific types of monocytes/macrophages that are able to release this agent when in presence of high parasite load.  相似文献   

11.
Mechanical stress was one of stresses with whichplants often met. With the development of fruit andvegetable finish machining in food industry, artificialinjury also appeared. As response to other stresses,plants have evolved with some adaptive mechanismsto cope with wounding[1]. Jasmonic acid (JA) andmethyl jasmonate (MeJA), as important signal mole-cules in plant response to wounding, have attracted agreat deal of attention. The studies on some crops, suchas potato[2], rice[3], and tomato[…  相似文献   

12.
The mechanism of pH-dependent hydrogen peroxide cytotoxicity in vitro   总被引:1,自引:0,他引:1  
The present paper is concerned with the influence of hydrogen ion concentration and composition of the medium on clonogenic survival of epithelial cells exposed to hydrogen peroxide in vitro. The survival of cells incubated with H2O2 in phosphate-buffered saline at pH 6.5 was 1 x 10(-2) and increased abruptly to 9 x 10(-2) at pH 7.0. The pH dependence of the cytocidal effect was particularly conspicuous when Eagle's minimum essential medium (SFMEM) was used for cell exposure to H2O2: the survival was characterized by exponential pH dependence and varied from 1 x 10(-1) to 9 x 10(-1) for pH 6.5 and 7.5, respectively, with a superimposed sharp peak value of 9 x 10(-1) at pH 7.0. The enhanced pH dependence of the H2O2 cytotoxicity in SFMEM was found to result from the additive action of glucose and histidine present in this medium. Glucose alone protected the cells with the efficiency decreasing with increasing hydrogen ion concentration. Histidine was responsible for the intermediate maximum in the pH-dependent survival spectrum. In addition, the changes in cell survival were accompanied by pH-dependent release of GSSG from the exposed cells. The GSSG efflux was inhibited by glucose in the medium. The influence of glucose on both the pattern of cell survival and the associated GSSG release indicate that the glutathione peroxidase activity supported by the pentose phosphate pathway is crucial in cell protection against extracellular H2O2 toxicity.  相似文献   

13.
The ability of neurons to detoxify exogenously applied peroxides was analyzed using neuron-rich primary cultures derived from embryonic rat brain. Incubation of neurons with H2O2 at an initial concentration of 100 microM (300 nmol/3 ml) led to a decrease in the concentration of the peroxide, which depended strongly on the seeding density of the neurons. When 3 x 10(6) viable cells were seeded per dish, the half-time for the clearance by neurons of H2O2 from the incubation buffer was 15.1 min. Immediately after application of 100 microM H2O2 to neurons, glutathione was quickly oxidized. After incubation for 2.5 min, GSSG accounted for 48% of the total glutathione. Subsequent removal of H2O2 caused an almost complete regeneration of the original ratio of GSH to GSSG within 2.5 min. Compared with confluent astroglial cultures, neuron-rich cultures cleared H2O2 more slowly from the incubation buffer. However, if the differences in protein content were taken into consideration, the ability of the cells to dispose of H2O2 was identical in the two culture types. The clearance rate by neurons for H2O2 was strongly reduced in the presence of the catalase inhibitor 3-aminotriazol, a situation contrasting with that in astroglial cultures. This indicates that for the rapid clearance of H2O2 by neurons, both glutathione peroxidase and catalase are essential and that the glutathione system cannot functionally compensate for the loss of the catalase reaction. In addition, the protein-normalized ability of neuronal cultures to detoxify exogenous cumene hydroperoxide, an alkyl hydroperoxide that is reduced exclusively via the glutathione system, was lower than that of astroglial cells by a factor of 3. These results demonstrate that the glutathione system of peroxide detoxification in neurons is less efficient than that of astroglial cells.  相似文献   

14.
The effects of hydrogen peroxide treatments on Escherichia coli KS400 and AB1157 cells were assessed by monitoring the accumulation of oxidative damage products, carbonyl proteins and thiobarbituric acid-reactive substances (TBARS), as well as the activities of selected antioxidant enzymes. H(2)O(2) treatment stimulated increases in both TBARS and carbonyl protein levels in dose- and time-dependent manners in KS400 cells. The accumulation of TBARS was much more variable with H(2)O(2) treatment; TBARS content was significantly increased in response to 5 microM H(2)O(2), whereas a significant increase in carbonyl protein content occurred at 100 microM H(2)O(2). Similarly, treatment with 20 microM hydrogen peroxide for different lengths of time resulted in peak TBARS accumulation by 20 min, whereas carbonyl protein levels were significantly elevated only after 60 min. In AB1157 cells, treatment with 20 microM hydrogen peroxide for 20 min led to strong increases in both carbonyl protein and TBARS levels. This treatment also triggered increased activities of enzymes of the oxyR regulon (catalase, peroxidase, and glutathione reductase) in both strains. In the AB1157 strain, H(2)O(2) exposure also increased the activities of two enzymes of the soxRS regulon (superoxide dismutase and glucose-6-phosphate dehydrogenase) by 50-60%. The data show differential variability of lipids versus proteins to oxidative damage induced by H(2)O(2,) as well as strain-specific differences in the accumulation of damage products and the responses by antioxidant enzymes to H(2)O(2) stress.  相似文献   

15.
Mammalian cells contain two forms of thioredoxin reductase (TrxR), cytosolic TrxR1 and mitochondrial TrxR2. To investigate the biological roles of TrxR2, we generated stable HeLa cell lines expressing a dominant negative form of TrxR2 (TrxR2DN) under the control of the tetracycline-off system. We observed that TrxR2DN-induced cells, following stimulation with EGF, produced more hydrogen peroxide than uninduced cells. The extent of protein tyrosine phosphorylation of many proteins including ERK was higher in TrxR2DN-induced cells than in uninduced cells when stimulated with fetal bovine serum or EGF. Induction of TrxR2DN also resulted in the increased rate of progression of G1 to S phase in cell cycle and cell proliferation and affected the expression of many proteins involved in cell cycle. These results suggest that TrxR2 participates in the regulation of protein tyrosine phosphorylation and cell growth as a component of the mitochondria specific H2O2-eliminating system that includes peroxiredoxin III and thioredoxin 2.  相似文献   

16.
Antisperm antibody (ASA)- and complement (C)-mediated immune injury to human sperm is thought to be caused in part by phagocytic neutrophils. To investigate this process, we co-cultured purified human polymorphonuclear leukocytes (PMN) with swim-up sperm in the presence of ASA-positive and ASA-negative sera and assayed for PMN respiratory burst activity, monitored by the release of superoxide anion (O2-) and hydrogen peroxide (H2O2). Phorbol myristate acetate (PMA) and opsonized zymosan were used as positive controls. Phagocytosis of ASA-positive and C-bound sperm by PMN did not enhance O2- production when compared to incubation of sperm with ASA-negative sera. Phagocytosis of ASA-positive and C-bound sperm also resulted in minimal release of H2O2 when compared with ASA-positive and C-negative sperm that were not phagocytosed. In contrast, PMN were maximally stimulated to release O2- in response to either opsonized zymosan or PMA. The kinetics of PMA-induced O2- release was unaffected by the presence of ASA-positive and C-bound sperm. Cytocentrifuge preparations of PMN incubated with ASA-positive and C-bound sperm revealed limited O2- release at the site of PMN/sperm contact. These results indicated that 1) phagocytosis of motile sperm by PMN requires the binding of both ASA and C to the sperm surface; 2) phagocytosis of ASA-positive and C-positive sperm by PMN fails to release reactive oxygen species; and 3) metabolic processes associated with PMN respiratory burst activity may not be coupled to the ingestion of ASA-positive and C-bound sperm.  相似文献   

17.
Experimental extrinsic allergic alveolitis (EAA) was induced in guinea pigs with Saccharopolyspora rectivirgula. Bronchoalveolar lavages were performed before inducing EAA (day 1, BAL 1), on day 23 (BAL 2), and on day 48 (BAL 3). The number of cells/ml in lavage fluid was increased at BAL 2 (4.79 x 10(6) and BAL 3 (4.29 x 10(6)) compared with BAL 1 (0.56 x 10(6)). The number of major cell types increased simultaneously, neutrophil becoming the predominant cell type over alveolar macrophages (AM). The production of H2O2 by AM was measured at the different phases of EAA. Adherent AM were either non-stimulated or triggered with phorbol myristate acetate (PMA), zymosan. S. rectivirgula opsonized with normal guinea pig serum (SRNS), or S. rectivirgula opsonized with guinea pig anti-S, rectivirgula serum (SRAS). Stimulated AM produced larger quantities of H2O2 than unstimulated cells, PMA being the most potent stimulus. At day 1, AM stimulated with S. rectivirgula and zymosan produced similar quantities of H2O2. After the induction of the disease, AM stimulated with S. rectivirgula produced larger quantities of H2O2 than with zymosan. Production of H2O2 by AM stimulated with S. rectivirgula or PMA, respectively, stayed the same at day 1 and 23, but increased sharply for both stimuli at day 48. There was no difference between H2O2 production by AM triggered with SRNS or with SRAS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In the present study, we investigated the effect of naturally occurring and synthetic peroxides on K+-depolarization-evoked release of [3H]D-aspartate from bovine isolated retinae. Furthermore, effect of peroxides on endogenous glutamate concentrations were measured by HPLC in bovine neural retinae and vitreous humor of eyes treated with hydrogen peroxide (H2O2) ex vivo. Both naturally occurring H2O2 (1-100 microM) and synthetic (cumene hydroperoxide, cuOOH; 1-100 microM) peroxides caused a concentration-dependent inhibition of K+-evoked [3H]D-aspartate release without affecting basal tritium efflux. The antioxidant, trolox (2 mM) prevented the inhibition of evoked [3H]D-aspartate overflow elicited by both H2O2 (30 microM) and cuOOH (10 microM). Inhibition of catalase by 3-amino-triazole (3- AT 100 mM) enhanced an inhibitory effect of a low concentration of H2O2 (1 microM) but antagonized the effect of H2O2 (30 microM) on K+-induced [3H]D-aspartate release. In ex vivo experiments, exogenously applied H2O2 (1-100 microM) also caused a concentration-related decrease in glutamate levels in the bovine retina. We conclude that peroxides can inhibit K+-evoked release of [3H]D-aspartate and also decrease endogenous glutamate concentrations in the bovine retina.  相似文献   

19.
G-6-PD-deficiency is a genetic disorder of erythrocytes in which the inability of affected cells to maintain NAD(P)H levels sufficient for the reduction of oxidized glutathione results in inadequate detoxification of hydrogen peroxide through glutathione peroxidase. Although a variety of free-radical species may be produced during the interaction of xenobiotic agents with erythrocytes and hemoglobin, the inability to destroy peroxides seems to be the hallmark of the disease. Colloid osmotic hemolysis is seldom observed in this disorder and it is possible that hydroxyl radicals derived from peroxide damage both lipid and protein constituents of the plasma membrane so that its intrinsic mechanical properties are altered. Erythrocytes with damaged membranes become less deformable and may be subjected to mechanical entrapment in the microcirculation. Ultimate recognition of damaged cell and sequestration by phagocytes leads to anemia.  相似文献   

20.
Opiate addiction and stress have been associated with altered immune responses. In this study, we evaluated the influence of morphine and the stress responsive opioid peptide beta-endorphin (beta-END) on O-2 and H2O2 production by cultured human peripheral blood mononuclear cells. Exposure of these cells during 48 hr of culture to morphine and beta-END at pharmacologically (10(-8) M) and physiologically (10(-12) M) relevant concentrations, respectively, markedly suppressed peripheral blood mononuclear cell O-2 and H2O2 release in response to the respiratory burst stimuli opsonized zymosan and phorbol myristate acetate. Both opioids also induced a minimal, but statistically significant, increase in resting O-2 and H2O2 generation. The modulatory effects of morphine and beta-END on peripheral blood mononuclear cell oxygen metabolism appeared to involve a classical opioid receptor, because opioid activity was blocked by naloxone and was not observed with N-acetylated-beta-END. Using purified lymphocyte and monocyte preparations, we determined that although opioids directly increase monocyte-resting oxygen metabolism, lymphocytes are the primary target cell in opioid-mediated suppression of monocyte respiratory burst activity. The release of a suppressive product from opioid-triggered lymphocytes was inhibited by cyclosporine. Based on the results of this study, we propose that opioid-mediated suppression of mononuclear phagocyte respiratory burst activity is another factor to be considered in the immunodeficiency of opiate addiction and stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号