首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Oscillations of ectoplasmic contraction in plasmodia of the myxomycetePhysarum polycephalum growing on agar containing semidefined medium were studied to determine if the contractile force is altered during the synchronous mitosis. In interphase the regular oscillations of contraction in the plasmodial sheet had an average period of 0.93 minutes in plasmodia growing at 24 °C. During mitosis the amplitude of these oscillations gradually decreased, ceasing for an average time of 2.7 minutes in 74% of the 23 plasmodia studied. Cessation of oscillating contractions in mitosis was accompanied by a decrease in the width of the channels embedded in the plasmodial sheet, and a decrease in the velocity of endoplasmic shuttle streaming usually to a complete standstill. Of 13 plasmodia in which the mitotic stage was very accurately determined, the stop in oscillating contractions occurred during metaphase in 10 plasmodia, and in prometaphase, anaphase, telophase in the 3 others. The cessation of contractile oscillations or of streaming did not occur absolutely simultaneously during mitosis in widely separated locations within one plasmodium, indicating mitotic asynchrony over a period of a few minutes within each plasmodium. We suggest that the halt of plasmodial migration during mitosis reported by others is caused by a decrease or cessation at slightly different times in the amplitude of ectoplasmic contractile oscillations in different areas of a plasmodium in mitosis resulting in an overall lack of coordination of endoplasmic flow throughout the plasmodium, thus temporarily halting migration. Possible physiological mechanisms linking a decrease in actomyosin contraction with the metaphase stage of mitosis are discussed.  相似文献   

2.
A system of synchronous cell division was established by starvation of auxin and its readdition to suspension cultures of cells of Catharanthus roseus L. cv. Little-Pinky. When cells in the stationary phase were transferred to fresh medium free of 2,4-dichlorophenoxyacetic acid (2,4-D), cells were arrested preferentially at the G1 phase. After cells had been cultured for 2 days in medium without 2,4-D, readdition of 2,4-D induced the synchronous division of cells. In this system, 70–80% of cells divided synchronously within 3 to 4h, and the mitotic index increased sharply in parallel with the increase in cell number. Active synthesis of DNA was demonstrated by measurements of incorporation of [3H]-thymidine into the DNA fraction. The induction of cell division by the addition of 2,4-D was inhibited by treating cells with analogues of auxin, such as 2,4,6-trichlorophenoxyacetic acid and p-chlorophenoxyisobutyric acid.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 4,6-diamidino-2-phenylindole - IAA indole-3-acetic acid - MS Murashige & Skoog - NAA -naphthalenacetic acid - PCIB p-chlorophenoxyisobutyric acid - 2,4,6-T 2,4,6-trichlorophenoxyacetic acid  相似文献   

3.
Summary The same basic ultrastructural features of interphase and mitotic nuclei were found for both the haploid Colonia and the diploid wild type strains of the myxomycete,Physarum polycephalum. Differences in nuclear size and chromocenter numbers were observed, but the nucleolar cycle and the intranuclear and acentriolar type of mitosis characteristic of the plasmodial stage of the diploid is present in haploid plasmodia, ruling out any relation between ploidy level and type of mitotic figure.  相似文献   

4.
Summary Cell distribution in different compartments of the cell cycle (G1, early, middle and late S, G2 and mitosis) has been studied during treatment with 0.5 mM 5-aminouracil and recovery inAllium cepa L. root meristems by cytophotometric and autoradiographic methods. At optimum conditions for obtaining mitotic synchronization, 5-aminouracil gives rise to cell accumulation in the S period, preferentially in its middle zone where the relative DNA content is 2.8 ± 0.1 C. After a 14-hour treatment 33% of the proliferative population is accumulated in this particular region.During recovery, a drastic reduction of the S phase and a clear increase of the mitotic frequency are the most important events observed. Apparently, the removal of the drug frees the blockage and the accumulated cells complete their interphase making up the mitotic wave.  相似文献   

5.
To resolve the problem of whether mitosis is controlled by anuclear or cytoplasmic stimulus, plasmodia from various periodsof the mitotic cycle were fused with one another. Mitosis inthe fused plasmodiura occurred about midway between mitosesof the donors. Treatment with cyclohcximide during the G2-period.delayed the next mitosis for a period equal to the time of treatment. (Received March 2, 1971; )  相似文献   

6.
Hudman  J. F.  Glenn  A. R. 《Archives of microbiology》1984,140(2-3):252-256
Selenite uptake and incorporation in Selenomonas ruminantium was constitutive with an inducible component. It was distinct from sulphate or selenate transport, since sulphate and selenate did not inhbit uptake, nor could sulphate or selenate uptake be demonstrated. Selenite uptake had an apparent K m of 1.28 mM and a V max of 148 ng Se min-1 mg-1 protein. Uptake was sensitive to inhibition by 2,4-dinitrophenol (DNP), carbonyl cyanide m-chlorophenyl hydrazone (CCCP), azide, iodoacetic acid (IAA) and N-ethylmaleimide (NEM), but not chloropromazine (CPZ), N,N-dicyclohexyl-carbodiimide (DCCD), quinine, arsenate, or fluoride. Treatment of cells accumulating 75[Se]-Selenite with 2,4,DNP inhibited uptake, but did not cause efflux. Transport of selenite was inhibited by sulphite and nitrite, but not by nitrate, phosphate, sulphate of selenate. 75[Se]-Selenite was incorporated into selenocystine, selenoethionine, selenohomocysteine, and selenomethionine and was also reduced to red elemental selenium.  相似文献   

7.
HeLa plasma membranes from M, G1, and S phase cells were isolated from growing synchronous cell cultures. It was found that the specific activity of plasma membrane alkaline phosphatase was over three times higher in the M phase cell than in the G1 and S phase cell. However, sodium dodecyl sulfate (SDS) polyacrylamide disc gel electrophoresis showed that the S phase plasma membrane contained 5.5 times more alkaline phosphatase protein than did the plasma membrane from mitotic cells, and 11.0 times more than the G1 phase plasma membrane. This would indicate that the high specific activity in mitosis was due to modification of the alkaline phosphatase protein resulting in increased enzymatic activity.  相似文献   

8.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   

9.
Methanobacterium thermoautotrophicum was found to require sodium for growth and for CO2 reduction to methane. The dependence of the rate of growth and methane formation on the sodium concentration was hyperbolic with an apparent K s for sodium of approximately 1 mM. The findings indicate that sodium has a specific function in the energy metabolism of this bacterium.  相似文献   

10.
It has been reported that protoplasmic streaming stops during the synchronous mitosis exhibited by growing plasmodia of P. polycephalum. Our data reveal that at no time during the mitotic cycle did streaming stop. However, during a 3–5 min period at anaphase the percent of each oscillation period accounted for by an outward flow was precisely equal in duration to the corresponding inward flow. At all other periods the duration of outward flow exceeded that of inward flow. Plasmodial migration or locomotion was briefly arrested at telophase, although shuttle streaming persisted.  相似文献   

11.
Summary The rhythmic contraction pattern in plasmodia ofPhysarum polycephalum was studied to determine whether characteristic changes occur during the synchronized nuclear division. An electrical method that measures the contraction rhythm in situ during several cell cycles was used. Biopsies of the plasmodia were taken at 17 min intervals for precise determination of the cell cycle stages and were correlated with the simultaneously measured contraction rhythm. All measurements were performed in a temperature controlled environment (27 °C) at 100% relative humidity with the plasmodia (less than 24 h old) growing on a semi-defined agar medium. A total of 14 different plasmodia have been examined, and on one occasion the plasmodium was followed through 3 subsequent mitoses. The mitotic stages were identified with aceto-orcein coloring techniques and by fluorescence methods. Except for a few cases where a mitotic asynchrony of 2–3 min was observed, the mitotic events occurred simultaneously in the nuclei within a single plasmodium. Both the occurrence of the first mitosis after inoculation and the intermitotic times were highly variable. Our study indicates that the contraction rhythm in plasmodia ofPhysarum is unperturbed during the synchronized nuclear division. However, in 5 of the 17 examined mitoses an amplitude decay was observed. We discuss possible explanations for the obtained results with emphasis on the applied techniques, interpretation of the oscillation patterns, and possible restrictions in the cell itself.  相似文献   

12.
An effect of the Au(III) energy dependent concentration has been discovered by living Chlorella cells. The process is most intensive within the alkaline interval of pH, fading away in the dark, and is suppressed in the presence of arsenate (C ≧ 1 μM), fluorides (C ≧ 0.01 mM), sodium azide (1 mM), DCCD (10 μM), 2, 4-dinitrophenol (0.1 mM). In the dark the process is stimulated by ATP (but not by ADP, or AMP). ATP also neutralizes NaN3 effect, but not that of DNP. An energy dependent Au(III) concentration is also observed for other green, blue-green, and, red singlecell algae.  相似文献   

13.
Summary Immunofluorescent labelling ofPhysarum microtubules with a new antibody specific for the 1-isotubulin has been compared with the labelling with an antibody specific for -isotubulins and an antibody with recognizes tubulin chains terminated by an aromatic amino-acid. In agreement with the known presence of only one -isotype in amoebae and several -isotypes in plasmodia, the immunofluorescence of the mitotic spindle was qualitatively identical, but lower in plasmodia than in amoebae. In all cases except one, there were no relative variations of immuno-fluorescence staining with the three antibodies, from metaphase to telophase, in spindles sampled. In plasmodia grown at optimal temperature, both during normal or perturbed mitosis, the immunostaining of the 1isotype decreased sharply after metaphase, while the staining obtained with the two other antibodies did not vary significantly. The immunologic determination of the relative amount of the 1-isotubulin in the tubulin pool and in isolated mitotic microtubules could not account for this observation.  相似文献   

14.
Extracts of the myxomycete Physarum polycephalum exhibit an accelerating effect on nuclear division which fluctuates during the synchronous nuclear division cycle. Extracts from late G2 phase plasmodia can advance mitosis in recipient test plasmodia by up to 30% of the length of the control cycle. The advancing capacity of extracts is heat- and ammonium sulphate-precipitable, non-dialysable and destroyed by pronase, suggesting that the active substance is a protein. The advance of mitosis is in strong correlation with the applied dose of stimulatory material.  相似文献   

15.
During mouse embryonic development germ cells proliferate extensively until they commit to the male or female pathway and arrest in mitosis or meiosis respectively. Whilst the transition of female germ cells exiting the mitotic cell cycle and entering meiosis is well defined histologically, the essential cell cycle proteins involved in this process have remained unresolved. Using flow cytometry we have examined the entry of female germ cells into meiosis, their termination of DNA synthesis and entry into prophase I. Analysis of key G2/M cell cycle proteins revealed that entry into meiosis and cell cycle exit at G2/M involves repression of G2/M promoting Cyclin B1, coincident upregulation of G2/M repressing Cyclin B3 and robust establishment of the ATM/CHK2 pathway. By contrast we show that the ATR/CHK1 pathway is activated in male and female germ cells. This data indicates that an important G2/M surveillance mechanism operates during germ cell proliferation and that passage into meiotic G2/M involves the combined repression of G2/M through Cyclin B3 and activation of the key G2/M checkpoint regulatory network modulated through ATM and CHK2. This work shows that the core regulatory machinery that controls G2/M progression in mitotic cells is activated in female mouse germ cells as they enter meiosis.  相似文献   

16.
According to the principal control point (PCP) hypothesis, experiments with excised, carbohydrate-starved stationary root meristems of Vicia faba var. minor have demonstrated that cells which previously divided asynchronously were preferentially blocked in G1 (PCP1) and G2 (PCP2) phases. When stationary phase meristems are supplied with exogenous carbohydrate (2 % sucrose), the G1- and G2-arrested cells start out DNA replication and mitotic divisions, respectively. The resumption of DNA synthesis and mitosis is not immediate and the delays of G1- and G2-arrested cells are found different. Using this model, we examined the effects of 4 pulse incubations with okadaic acid (OA), a specific inhibitor of PP1 and PP2A, on the duration of intervals elapsing between the provision of sucrose and the first appearance of S- and M-phase cells. We have found that depending on the period during which OA had been applied, the release from G1 and G2 phase arrest-points becomes prolonged, showing different time-course modifications. The obtained data provide evidence that activation of PP1 and PP2A is required to allow the cells for both PCP1→S and PCP2→M transitions in root meristems of V. faba.  相似文献   

17.
Summary HeLa cells in a monolayer culture were synchronized to S, G2 and mitotic phases by use of excess (2.5 mM) deoxythymidine double-block technique. The localizations of Ca++-activated adenosine triphosphatase (ATPase) at different phases of the cell cycle were studied using light and electron-microscopic histochemical techniques, and microphotometric comparisons of the densities of reaction products. Enzyme reaction product was always localized in the endoplasmic reticulum, nuclear membrane, mitochondria and Golgi apparatus, but there were qualitative and quantitative differences related to the phases of the cell cycle. In S phase the activity was mainly concentrated in a perinuclear area of the cytoplasm whereas in G2 and mitosis the activity was scattered throughout the cell. The total activity per cell was maximal in G2, was less in S phase and least in mitosis. Activity in the mitochondria and endoplasmic reticulum was distinctly less in mitosis than in other phases of the cell cycle. The mitochondrial ATPase differed from the ATPase at other sites in ion dependence and sensitivity to oligomycin. The results suggest that there may be several distinct ATPases in proliferating cells.  相似文献   

18.
The time in the cell cycle when CO2 provision was required for cell development and division was determined in synchronous cultures of Chlamydomonas segnis Ettl bubbled with air (0.03% CO2) or air enriched with 5% CO2 under continuous light at 25°C and pH 7. Provision of CO2 (% in air v/v) during the G1-phase was found to be essential for the completion of the cell cycle. There was no demand for CO2 supply throughout the S-phase and mitosis. Using cultures adapted to CO2 concentrations ranging from 0.03 to 5% in air, the apparent CO2 concentration (Km) required for the cells to develop during the G-1-phase and to attain one half the maximal rates of photo-synthetic O2 evolution was calculated as 0.05%. This value increased to 0.1 and 0.5% during the S-phase. For total protein and carbohydrate accumulation, which would reflect inorganic carbon (CO2+ HCO3?) assimilation, the Km (% CO2) were ca. 0.1 and 0.14 throughout the cell cycle, respectively. The CO2 concentration at which the cells exhibited the shortest generation time (6.7 h) was 0.1%. These results showed that during development, cells photosynthesizing (evolving O2) at maximal rates but accumulating protein and carbohydrate at one half the maximal rates or less would complete their vegetative life cycle in the shortest time.  相似文献   

19.
Summary The nuclear cycle among several diverse genetic stocks of Zea mays root meristem cells was compared and it was found that there were no significant differences among the nuclear cycle durations and its component phases. The durations of various periods of their mitotic cycles were studied by autoradiography of cells pulse-labelled with tritiated thymidine (3H-TdR). The total nuclear cycle was 10 to 11.5 hours and mitosis was 0.81 to 1.34 hours at 25°C. The S period is the longest interval (50% of the total time) of the nuclear cycle; of the rest of the cycle, G2 is longer than G1 or mitosis among all stocks. The constancy of the nuclear cycle among several stocks was adduced as evidence for strict genetic control of the cycle. Furthermore, it is demonstrated the DNA synthesis period is not dependent upon the amount of DNA present.This study is based on a portion of the dissertation presented by the senior author to the Graduate School, The University of Western Ontario, London, Canada, in partial fulfillment of the requirement for the Ph. D. degree  相似文献   

20.
The occurrence of the mitotic Ca2+-ATPase, resembling the enzyme described for higher organisms, is demonstrated in multinuclear plasmodia of the myxomycete Physarum polycephalum. The activity of this enzyme undergoes cyclic fluctuations during the synchronous nuclear cycle with a minimum in early G2-phase and a maximum around the time of mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号