首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DspA/E is a pathogenicity factor of Erwinia amylovora that is translocated into the plant cell cytoplasm through an Hrp type III secretion system. Transient expression of dspA/E in Nicotiana benthamiana or yeast induced cell death, as it does in N. tabacum and apple as described previously. DspA/E-induced cell death in N. benthamiana was not inhibited by coexpression of AvrPtoB of Pseudomonas syringae pv. tomato , which inhibits programmed cell death (PCD) induced by several other elicitors in plants. Silencing of NbSGT1 , the expression of which is required for PCD mediated by several resistance proteins of plants, prevented DspA/E-induced cell death in N. benthamiana. However, silencing of NbRAR1 , or two MAP kinase kinase genes, which are required for PCD associated with many resistance genes in plants, did not prevent cell death induced by DspA/E. Silencing of NbSGT1 also compromised non-host resistance against E. amylovora . E. amylovora grew rapidly within the first 24 h after infiltration in N. benthamiana , and DspA/E was required for this early rapid growth. However, bacterial cell numbers decreased after 24 h in TRV-vector-transformed plants, whereas a dspA/E mutant strain grew to high populations in NbSGT1 -silenced plants. Our results indicate that DspA/E enhances virulence of E. amylovora in N. benthamiana, but the bacteria are then recognized by the plant, resulting in PCD and death of bacterial cells or restriction of bacterial cell growth.  相似文献   

2.
Programmed cell death (PCD) is one of the important terminal paths for the cells of metazoans, and is involved in a variety of biological events that include morphogenesis, maintenance of tissue homeostasis, and elimination of harmful cells. Dysfunction of PCD leads to various diseases in humans, including cancer and several degenerative diseases. Apoptosis is not the only form of PCD. Recent studies have provided evidence that there is another mechanism of PCD, which is associated with the appearance of autophagosomes and depends on autophagy proteins. This form of cell death most likely corresponds to a process that has been morphologically defined as autophagic PCD. The present review summarizes recent experimental evidence about autophagic PCD and discusses some aspects of this form of cell death, including the mechanisms that may distinguish autophagic death from the process of autophagy involved in cell survival.  相似文献   

3.
Programmed cell death (PCD) in plant cells is often accompanied by biochemical and morphological hallmarks similar to those of animal apoptosis. However, orthologs of animal caspases, cysteinyl aspartate-specific proteases that constitute the core component of animal apoptosis, have not yet been identified in plants. Recent studies have revealed the presence of a family of genes encoding proteins with distant homology to mammalian caspases, designated metacaspases, in the Arabidopsis thaliana genome. Here, we describe the isolation of LeMCA1, a type-II metacaspase cDNA clone from tomato (Lycopersicon esculentum Mill.). BLAST analysis demonstrated that the LeMCA1 gene is located in close vicinity of several genes that have been linked with PCD. Southern analysis indicated the existence of at least one more metacaspase in the tomato genome. LeMCA1 mRNA levels rapidly increased upon infection of tomato leaves with Botrytis cinerea, a fungal pathogen that induces cell death in several plant species. LeMCA1 was not upregulated during chemical-induced PCD in suspension-cultured tomato cells.  相似文献   

4.
《The Journal of cell biology》1996,133(5):1041-1051
In the accompanying paper by Weil et al. (1996) we show that staurosporine (STS), in the presence of cycloheximide (CHX) to inhibit protein synthesis, induces apoptotic cell death in a large variety of nucleated mammalian cell types, suggesting that all nucleated mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD). The reliability of that conclusion depends on the evidence that STS-induced, and (STS + CHS)-induced, cell deaths are bona fide examples of PCD. There is rapidly accumulating evidence that some members of the Ced-3/Interleukin-1 beta converting enzyme (ICE) family of cysteine proteases are part of the basic machinery of PCD. Here we show that Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a cell-permeable, irreversible, tripeptide inhibitor of some of these proteases, suppresses STS-induced and (STS + CHX)-induced cell death in a wide variety of mammalian cell types, including anucleate cytoplasts, providing strong evidence that these are all bona fide examples of PCD. We show that the Ced-3/ICE family member CPP32 becomes activated in STS- induced PCD, and that Bcl-2 inhibits this activation. Most important, we show that, in some cells at least, one or more CPP32-family members, but not ICE itself, is required for STS-induced PCD. Finally, we show that zVAD-fmk suppresses PCD in the interdigital webs in developing mouse paws and blocks the removal of web tissue during digit development, suggesting that this inhibition will be a useful tool for investigating the roles of PCD in various developmental processes.  相似文献   

5.
Randy Strich 《Genetics》2015,200(4):1003-1014
Apoptosis or programmed cell death (PCD) was initially described in metazoans as a genetically controlled process leading to intracellular breakdown and engulfment by a neighboring cell . This process was distinguished from other forms of cell death like necrosis by maintenance of plasma membrane integrity prior to engulfment and the well-defined genetic system controlling this process. Apoptosis was originally described as a mechanism to reshape tissues during development. Given this context, the assumption was made that this process would not be found in simpler eukaryotes such as budding yeast. Although basic components of the apoptotic pathway were identified in yeast, initial observations suggested that it was devoid of prosurvival and prodeath regulatory proteins identified in mammalian cells. However, as apoptosis became extensively linked to the elimination of damaged cells, key PCD regulatory proteins were identified in yeast that play similar roles in mammals. This review highlights recent discoveries that have permitted information regarding PCD regulation in yeast to now inform experiments in animals.  相似文献   

6.
7.
Specific DNA fragmentation into oligonucleosomal units occurs during programmed cell death (PCD) in both animal and plant cells, usually being regarded as an indicator of its apoptotic character. This internucleosomal DNA fragmentation is demonstrated in tobacco suspension and leaf cells, which were killed immediately by freezing in liquid nitrogen, and homogenization or treatment with Triton X-100. Although these cells could not activate and realize the respective enzymatic processes in a programmed manner, the character of DNA fragmentation was similar to that in the cells undergoing typical gradual PCD induced by 50 microM CdSO4. This internucleosomal DNA fragmentation was connected with the action of cysteine proteases and the loss of membrane, in particular tonoplast, integrity. The mechanisms of DNase activation in the rapidly killed cells, hypothetical biological relevance, and implications for the classification of cell death are discussed.  相似文献   

8.
The silk gland of the silkworm Bombyx mori undergoes programmed cell death (PCD) during pupal metamorphosis. On the basis of their morphological changes and the occurrence of a DNA ladder, the tissue cells were categorized into three groups: intact, committed, and dying. To identify the proteins involved in this process, we conducted a comparative proteomic analysis. Protein expression changes among the three different cell types were examined by two-dimensional gel electrophoresis. Among approximately 1000 reproducibly detected protein spots on each gel, 43 were down-regulated and 34 were up-regulated in PCD process. Mass spectrometry identified 17 differentially expressed proteins, including some well-studied proteins as well as some novel PCD related proteins, such as caspases, proteasome subunit, elongation factor, heat shock protein, and hypothetical proteins. Our results suggest that these proteins may participate in the silk gland PCD process of B. mori and, thus, provide new insights for this mechanism.  相似文献   

9.
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.  相似文献   

10.
Ceramide has been typically thought of as the membrane anchor for the carbohydrate in glycosphingolipids but many studies have suggested that it may cause apoptosis. Apoptosis or programmed cell death (PCD) is thought to be responsible for the death of one-half of neurons surviving the development of the nervous system. The potential involvement of the sphingomyelin-ceramide signaling process as an integral part of PCD was therefore examined in several neurotumour cell lines. We show that synthetic C2-ceramide (N-acetylsphingosine), a soluble ceramide analogue, can rapidly trigger PCD in these cells, characterized by: 1) classic DNA laddering on agarose gels; 2) DNA fragmentation as determined by Hoechst Dye; and 3) cell viability (mitochondrial function and intact nuclei) assays. We report that staurosporine can both activate PCD (by all three criteria above) in neurotumour cells and increase both the formation of ceramide and ceramide mass. Both ceramide formation and the induction of PCD were further enhanced by the co-addition of a ceramidase inhibitor oleoylethanolamine (25 µM). Staurosporine and oleoylethanolamine were similarly effective in inducing ceramide formation and PCD in immortalized hippocampal neurons (HN-2) and immortalized dorsal root ganglion cells (F-11). Our data suggests that formation of ceramide is a key event in the induction of PCD in neuronally derived neurotumour cells.Abbreviations PCD programmed cell death - PKC protein kinase C - HPTLC high-performance thin-layer chromatography - DETAPAC diethylenetriaminepentaacetic acid - DMEM Dubelco's modified Eagle's medium - FCS fetal calf serum - PBS phosphate-buffered saline - DAG diacylglycerol - DDI distilled-deionized - Cer ceramide - SM sphingomyelin Dedicated to Dr Sen-itiroh Hakomori in celebration of his 65th birthday.  相似文献   

11.
Members of the the Bcl-2 and ICE/ced-3 gene families have been implicated as essential components in the control of the cell death pathway. Bcl-2 overexpression can prevent programmed cell death (PCD) in different cell types. ICE/ced-3-like proteases are synthesized as pro-enzymes and are activated by limited proteolysis. When overexpressed in diverse cell types, they trigger PCD. Bcl-2 can inhibit PCD mediated by these proteases, although as yet it is not clear at what specific step in the cell death pathway the protein acts. Here, we demonstrate that CPP32/Yama/Apopain, a member of the ICE/Ced-3 gene family, is processed during staurosporine-induced apoptosis in HeLa cells and that concomitant with CPP32 activation, two other proteins, poly (ADP-ribose) polymerase (PARP) and the U1-70 K small ribonucleoprotein, also undergo proteolysis. Overexpression of Bcl-2 prevents cleavage of CPP32, PARP and U1-70 K and protects HeLa cells from PCD. These results demonstrate that Bcl-2 controls PCD, by acting upstream of CPP32/Yama/Apopain.  相似文献   

12.
13.
14.
Mitochondrial involvement in tracheary element programmed cell death   总被引:14,自引:0,他引:14  
The mitochondria pathway is regarded as a central component of some types of programmed cell death (PCD) in animal cells where specific signals cause the release of cytochrome c from mitochondria to trigger a proteolytic cascade involving caspases. However, plant cells lack canonical caspases, therefore a role for the mitochondria in programmed cell death in plant cells is not obvious. Using plant cells which terminally differentiate, we provide evidence supporting the involvement of mitochondria in PCD, however the release of cytochrome c is insufficient to trigger the PCD. Prior to execution of cellular autolysis initiated by the rupture of the large central vacuole to release sequestered hydrolases, mitochondria adopt a definable morphology, the inner membrane depolarizes prior to death, and cytochrome c is released from mitochondria. However, PCD can be blocked despite translocation of cytochrome c. These results suggest a role for the mitochondria in this PCD but do not support the current animal model for a causative role of cytochrome c in triggering PCD.  相似文献   

15.
VDAC is a conserved element of death pathways in plant and animal systems   总被引:10,自引:0,他引:10  
Programmed cell death (PCD) is very much a part of plant life, although the underlying mechanisms are not so well understood as in animals. In animal cells, the voltage-dependent anion channel (VDAC), a major mitochondrial outer membrane transporter, plays an important role in apoptosis by participating in the release of intermembrane space proteins. To characterize plant PCD pathways by investigating the function of putative components in a mammalian apoptotic context, we have overexpressed a rice VDAC (osVDAC4) in the Jurkat T-cell line. Overexpression of osVDAC4 induces apoptosis, which can be blocked by Bcl-2 and the VDAC inhibitor DIDS. Modifying endogenous VDAC function by DIDS and hexokinase II (HxKII) in Jurkat cells inhibits mitochondria-mediated apoptotic pathways. Finally, we show that DIDS also abrogates heat-induced PCD in cucumber cotyledons. Our data suggest that VDAC is a conserved mitochondrial element of the death machinery in both plant and animal cells.  相似文献   

16.
Death receptor-induced programmed cell death (PCD) is crucial for the maintenance of immune homeostasis. However, interference of downstream death receptor signaling by genetic ablation or transgenic (Tg) expression of different apoptosis inhibitors often impairs lymphocyte activation. The viral FLICE (caspase-8)-like inhibitor proteins (v-FLIPs) are potent inhibitors of death receptor-induced apoptosis and programmed necrosis. We generated Tg mice expressing the v-FLIP MC159 from Molluscum contagiosum virus under the control of the H2Kb class I MHC promoter to examine the role of death receptor-induced PCD in the control of immune functions and homeostasis. We found that expression of MC159 led to lymphoproliferation and autoimmunity as exemplified by T and B lymphocyte expansion, accumulation of TCRalphabeta+ CD3+ B220+ CD4- CD8- lymphocytes in secondary lymphoid organs, elevated serum Ig levels, and increased anti-dsDNA Ab titers. These phenotypes were caused by defective death receptor-induced apoptosis, but not by defective passive cell death in the absence of mitogenic stimulation. Lymphocyte activation was normal, as demonstrated by normal thymidine incorporation and CSFE dilution of T cells stimulated with anti-CD3 and anti-CD28 Abs. In addition, effector CD8+ T cell responses to acute and memory lymphocytic choriomeningitis virus infections were unaffected in the Tg mice. These phenotypes are reminiscent of the lpr and gld mice, and show that the v-FLIP MC159 is a bona fide PCD inhibitor that does not interfere with other essential lymphocyte functions. Thus, the MC159-Tg mice provide a model to study the effects of PCD in immune responses without hampering other important lymphocyte functions.  相似文献   

17.
18.
Bone morphogenetic proteins (BMPs) play a crucial role in programmed cell death (PCD), a biological process required for the sculpturing of the embryonic limbs. However, it is unknown if BMP signaling directly promotes cell death, or if it induces a molecular cascade that culminates in cell death. Given that Smad8, which encodes one component of BMP signaling, is expressed during the regression of interdigital tissue and responds to BMPs, we presumed that it may be expressed in other cell death areas during chick limb development such as the anterior and posterior necrotic zones (ANZ and PNZ). The present study found that the Smad8 expression pattern in the anterior mesoderm of the hindlimb is very similar to that observed in limbs stained to detect cell death. Also, BMPs and retinoic acid, which act as apoptosis-promoting factors, induced expression of Smad8 before the onset of cell death, while sonic hedgehog protein, acting as a survival factor, inhibited Smad8 expression in the ANZ. However, although there was correlation between Smad8 expression patterns and PCD in the ANZ, phosphorylated forms of SMAD1/5/8 and TUNEL staining did not co-localize in dying cells. Interestingly, a short pulse of BMP was sufficient to trigger cell death. On the other hand, most dying cells were located in the avascular region, while many cells expressing Smad8 were located in the vascular region of the ANZ. These results suggest that BMPs mediated by SMAD signaling activate a molecular cascade that culminates in PCD.  相似文献   

19.
Early neural cell death: dying to become neurons   总被引:1,自引:0,他引:1  
The importance of programmed cell death (PCD) during vertebrate development has been well established. During the development of the nervous system in particular, neurotrophic cell death in innervating neurons matches the number of neurons to the size of their target field. However, PCD also occurs during earlier stages of neural development, within populations of proliferating neural precursors and newly postmitotic neuroblasts, all of which are not yet fully differentiated. This review addresses early neural PCD, which is distinct from neurotrophic death in differentiated neurons. Although early neural PCD is observed in a range of organisms, from Caenorhabditis elegans to mouse, the role and the regulation of early neural PCD are not well understood. The regulation of early neural PCD can be inferred from the function of factors such as bone morphogenetic proteins (BMPs), Wnts, fibroblast growth factors (FGFs), and Sonic Hedgehog (Shh), which regulate both early neural development and PCD occurring in other developmental processes. Cell number control, removal of damaged or misspecified cells (spatially or temporally), and selection are the proposed roles early neural PCDs play during neural development. Data from developmental PCD in C. elegans and Drosophila provide insights into the possible signaling pathways integrating PCD with other processes during early neural development and the roles they might play.  相似文献   

20.
Boron (B) is an essential micronutrient for vascular plants.However, it remains unclear how B deficiency leads to variousmetabolic disorders and cell death. To understand this mechanism,we analyzed the physiological changes in suspension-culturedtobacco (Nicotiana tabacum) BY-2 cells upon B deprivation. When3-day-old cells were transferred to B-free medium, cell deathwas detectable as early as 12 h after treatment. The B-deprivedcells accumulated more reactive oxygen species and lipid peroxidesthan control cells, and showed a slight but significant decreasein the cellular ascorbate pool. Supplementing the media withlipophilic antioxidants effectively suppressed the death ofB-deprived cells, suggesting that the oxidative damage is theimmediate and major cause of cell death under B deficiency.Dead cells in B-free culture exhibited a characteristic morphologywith a shrunken cytoplasm, which is often seen in cells undergoingprogrammed cell death (PCD). However, they did not display otherhallmarks of PCD such as internucleosomal DNA fragmentation,decreased ascorbate peroxidase expression and protection fromdeath by cycloheximide. These results suggest that the deathof tobacco cells induced by B deprivation is not likely to bea typical PCD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号