首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
During synchronous differentiation of embryonic chick muscle cells in cultures, the Na-dependent uptake of an amino acid analog, alpha-amino isobutyric acid (AIB) undergoes in abrupt, transient increase. The increase in AIB uptake is concomitant with the rapid fusion of mononucleated myoblasts, and precedes the accumulation of muscle-specific proteins. Subsequently, Na-dependent AIB transport diminishes markedly during postfusional differentiation of myotubes. The rate of AIB uptake is increased by insulin both before and after myoblast fusion. This stimulation by insulin is restricted to the Na-dependent component of total AIB uptake but is apparently not the result of insulin-mediated increase in the trans-membrane Na gradient.  相似文献   

2.
Primary cultures of mononucleated myoblasts from 12-day-old chick embryos have a twofold higher rate of α-aminoisobutyric acid (AIB) transport before fusion occurs to form multinucleated myotubes. Several lines of evidence indicate that the uptake of AIB observed in both myoblasts and myotubes is primarily carrier-mediated by a membrane transport system. Increasing the temperature from 24 to 37°C results in a threefold increase in the rate of AIB uptake; both methionine and glycine inhibit AIB uptake by more than 85%; and 2,4-dinitrophenol inhibits AIB uptake by approximately 50%. In addition, the energies of activation (14.5 and 14.0 kcal/mole for myoblasts and myotubes, respectively) are characteristic of carrier-mediated transport. Resolution of AIB uptake into a saturable, carrier-mediated component and a nonsaturable, diffusion component shows that at concentrations of AIB≤1.5 mM over 97% of total AIB uptake is carriermediated in both myoblasts and myotubes. Kinetic analysis of carrier-mediated AIB uptake indicates that myoblasts and myotube membrane carriers have the same affinity for AIB (Km values = 1.73 and 1.31 mM, respectively). However, the Vmax for myoblasts is 23.7 nmole/mg/min while myotubes have a Vmax of 12.6 nmole/mg/min. The twofold difference in Vmax is shown to be due to a twofold difference in the quantity of membrane transport sites per milligram of protein.  相似文献   

3.
The effects of insulin and insulin-like growth factor-I (IGF-I) on amino acid transport and protein metabolism were compared in myotubes derived from chicken breast muscle satellite cells. Protein synthesis was assessed by continuous labelling with [3H]-tyrosine. Protein degradation was estimated by the release of trichloroacetic acid (TCA) soluble radioactivity by cells which had been previously labelled with [3H]-tyrosine for 3 days. Amino acid transport was measured in myotubes incubated in Dulbecco's modified Eagle's medium (DMEM) 0.5% bovine serum albumin (BSA) with or without insulin or IGF-I. Subsequent [3H]-aminoisobutyric acid (AIB) uptake was then measured in amino acid-free medium. IGF-I was more efficient than insulin at equimolar concentration (3.2 nmol/l) in stimulating protein synthesis (127 and 113% of basal, respectively) and inhibiting protein degradation (32% and 13% inhibition of protein degradation following 4 h incubation). Half maximal effective concentrations for stimulation of AIB uptake were 0.27 ± 0.03 nmol/l and 34.8 ± 3.1 nmol/l for IGF-I and insulin respectively, with maximal stimulation of about 340% of basal. Cycloheximide (3.6 μmol/l) diminished IGF-I-stimulated AIB uptake by 55%. Chicken growth hormone had no effect on basal AIB uptake in these cells and neither glucagon nor dexamethasone had an effect on basal or IGF-I-stimulated AIB uptake. This study demonstrates an anabolic effect for IGF-I in myotubes derived from primary chicken satellite cells which is mediated by the type I IGF receptor, since the cation-independent mannose 6-phosphate receptor does not bind IGF-II in chicken cells. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The effects of the insulin-like growth factor, multiplication-stimulating activity (MSA), on chick myotube cultures were investigated. In serum-free media, MSA at levels reported to be present in fetal serum (5 ng/ml) significantly inhibited overall rates of protein degradation and stimulated protein synthesis and amino acid uptake. Half-maximal effects on protein degradation (-30%), synthesis (+25%), and amino acid uptake (+50%) occurred at approximately 0.05 micrograms/ml. In contrast, 10(2)-10(3)-fold higher concentrations (5 micrograms/ml) were required to stimulate transport of the glucose analog 2-deoxyglucose. The results indicate that MSA is an effective anabolic agent regulating protein metabolism and amino acid uptake, but not sugar transport in these cells. Parallel studies conducted with insulin demonstrated similar size effects on protein metabolism and amino acid uptake in serum-free media. However, unlike MSA, insulin levels (10(-2) units/ml) well in excess of its normal physiological range were required to produce significant effects. In addition, the relative sensitivity of sugar transport with respect to protein metabolic effects differed for insulin and MSA. Thus, 2-deoxyglucose transport was approximately 10 times more sensitive to insulin than protein synthesis, proteolysis, or amino acid uptake in contrast to MSA where the reverse was true. However, despite the relatively higher sensitivity of sugar transport to insulin, supraphysiological levels (10(-3) units/ml) of this hormone were still required for significant stimulation. These results suggest a generally low insulin sensitivity in cultured chick myotubes relative to adult tissues. In contrast, the effects of MSA are consistent with a possible role of this or similar factors in regulating growth and development of embryonic muscle.  相似文献   

5.
The action of L-triiodothyronine (T3) on amino acid transport in the GC clonal strain of rat pituitary cells was investigated by measurement of the uptake of the nonmetabolizable amino acid, alpha-aminoisobutyric acid (AIB). The uptake of AIB by GC cells appeared to require energy and Na+ and displayed Michaelis-Menten kinetics. In comparison to cultures maintained in the absence of T3, T3 addition resulted in an increase in AIB uptake which seemed due to an increase in the initial rate of AIB transport. T3 addition resulted in increased AIB accumulation at later time points as well. T3 induction of AIB transport did not occur until 3.5 h after addition of T3, and this effect was blocked by cycloheximide. Maximal induction occurred 48 to 72 h later. One-half maximal induction occurred 24 to 48 h after addition of T3. No detectable changes either in AIB uptake or intracellular water space, measured by uptake of the nonmetabolizable sugar, 3-O-methyl-D-glucose, were noted for the first 120 min after addition of T3. Induction of AIB transport occurred at 0.05 nM T3 (total medium concentration) and one-half maximal induction occurred at 0.17 nM T3. The relative potencies of four iodothyronine analogues for AIB transport were in accord with their reported activities in nuclear T3 receptor binding assays. These data suggest that induction of AIB transport by T3 may be mediated by the nuclear T3 receptor and may reflect the pleiotrophic response of GC cells to thyroid hormone.  相似文献   

6.
The effects of insulin, glucagon or Dexamethasone (DEX) and of glucagon with insulin or DEX were examined on the uptake of 2-amino [1-14C]isobutyric acid (AIB) and N-Methyl-2-amino [1-14C]isobutyric acid (NMe AIB) in monolayer cultures of rat hepatocytes. Insulin and glucagon stimulated the uptake of both the amino acids and DEX inhibited it, showing that all three of these hormones regulate the A system (the sodium-dependent system that permits the transport of NMe AIB) for amino acid transport in these cultures. Experiments investigating the transport of aminocyclopentane-1-carboxylic acid, 1- [carboxyl-14C] in the presence of excess AIB or in the absence of sodium showed that insulin had no effect on the activity of the L system (the sodium-independent system that prefers leucine). Experiments on the uptake of AIB in the presence of excess NMe AIB showed insulin had no effect on the transport activity of the ASC system (the sodium-dependent system that does not transport NEe AIB). Insulin concentrations ranging from 0.1 nM to 100 nM did not antagonize the stimulatory effect of optimum or suboptimum concentrations of glucagon on the uptake of either AIB or NMe AIB. Similarly, glucagon did not antagonize the stimulatory effect of optimum or suboptimum concentrations of insulin on the uptake of both the amino acids. The combined effect of insulin and glucagon was additive on the rate as well as the cumulative uptake of both AIB and NMe AIB. DEX alone inhibited the transport of both AIB and NMe AIB by about 25%, while glucagon caused a 2–3-fold increase; however, the addition of glucagon to cultures containing DEX caused a 7–8-fold increase in the uptake of both AIB and NMe AIB when compared to cultures containing DEX alone. The effect of insulin on the levels of cAMP was also investigated. Insulin had no effect on the cAMP levels in cultures treated or untreated with optimum or suboptimum concentrations of glucagon.  相似文献   

7.
Neutral amino acid transport is largely unexplored in astrocytes, although a role for these cells in blood-brain barrier function is suggested by their close apposition to cerebrovascular endothelium. This study examined the uptake into mouse astrocyte cultures of alpha-aminoisobutyric acid (AIB), a synthetic model substrate for Na+-dependent system A transport. Na+-dependent uptake of AIB was characteristic of system A in its pH sensitivity, kinetic properties, regulatory control, and pattern of analog inhibition. The rate of system A transport declined markedly with increasing age of the astrocyte cultures. There was an unexpectedly active Na+-independent component of AIB uptake that declined less markedly than system A transport as culture age increased. Although the saturability of the Na+-independent component and its pattern of analog inhibition were consistent with system L transport, the following properties deviated: (1) virtually complete inhibition of Na+-independent AIB uptake by characteristic L system substrates, suggesting unusually high affinity of the transporter; (2) apparent absence of trans-stimulation of AIB influx; (3) unusually concentrative uptake at steady state (the estimated distribution ratio for 0.2 mM AIB was 55); and (4) susceptibility to inhibition by N-ethylmaleimide. Direct study of the uptake of system L substrates in astrocytes is needed to confirm the present indications of high affinity and concentrative Na+-independent transport.  相似文献   

8.
Transport of K(+) by K(+)-depleted cells of marine pseudomonad B-16 (ATCC 19855) exhibited saturation kinetics. Rb(+) inhibited both K(+) transport and the K(+)-dependent transport of alpha-aminoisobutyric acid (AIB) into K(+)-depleted cells of the organism in proportion to the concentration of Rb(+) in the suspending medium. Inhibition of the K(+)-dependent uptake of AIB into K(+)-depleted cells by Rb(+) could be overcome by increasing the concentration of K(+) in the medium. When AIB and K(+) were added simultaneously to a suspension of K(+)-depleted cells, the uptake of K(+) occurred immediately and rapidly, whereas the accumulation of AIB occurred only after a lag. The initial uptake rate of AIB was directly proportional to the intracellular K(+) concentration. The intracellular concentration of K(+) and AIB at their steady-state levels increased to a maximum as the Na(+) concentration in the suspending medium was increased. At Na(+) concentrations between 0.2 and 0.3 M, the molar ratio of K(+) to AIB at their intracellular steady-state concentrations was constant at 1.6. At external Na(+) concentrations less than 0.2 M, the cells maintained a relatively higher K(+) intracellular steady-state level than AIB.  相似文献   

9.
Insulin modulation of the Na/H antiport of L-6 cells, from rat skeletal muscle was studied in both myoblasts and myotubes using the fluorescent, pH sensitive, intracellular probe 2′,7′ bis (carboxyethyl)-5(6)-carboxyfluorescein. Insulin stimulated the Na/H antiport activity in L-6 cells, showing a bell-shaped dose response typical of other insulin responses: a maximum at 10 nM (ΔpH of 0.132 ± 0.007 and 0.160 ± 0.040 over basal value, for myoblasts and myotubes, respectively; means ± SD, n = 6–8) and smaller effects at higher and lower concentrations. Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, also stimulated the antiport in myoblasts but not in myotubes. Surprisingly the rapid increase in intracellular pH was not observed when insulin and PMA were added simultaneously to myoblasts; apparently these two activators mutually excluded each other. Downregulation of protein kinase C, obtained by preincubation of cells with PMA for 20 hr, totally abolished both hormone and PMA effects in myoblasts, whereas in myotubes insulin stimulation was not affected. Inhibitors of tyrosine kinase activity, such as erbstatin analog and genistein abolished insulin effect on the Na/H antiport, both in myoblasts and in myotubes. Different sensitivity to pertussis toxin in the two cell types suggests that the differentiation process leads to a change in the signal pathways involved in the physiological response to insulin. J. Cell. Physiol. 171:235–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Specific uptake (S.U.) of α-aminoisobutyric acid ([1-14C]AIB), a non-metabolizable neutral amino acid analog, by dwarf bush bean plants (Phaseolus vulgaris cv Top Crop) demonstrated wide differences in active transport between various plant organs. The kinetic and timed uptake data reported were expressed as S.U. because this corrects for the diffusion of AIB which is part of the total AIB uptake process. Roots accumulated AIB to concentrations up to 18 times and leaf disks to twice those of the incubation medium. Stem tissue showed very little uptake, if any, that could not be accounted for by simple diffusion or water free space. Although initial rate kinetic studies demonstrated the presence of a normal transport system, timed uptake studies revealed greatly decreased transport by etiolated plants, suggesting a relationship between active transport and the lack of photosynthate. The reproducibility of the AIB uptake pattern by mature roots strongly supports the concept that the transport of neutral amino acids is biphasic and suggested one or more carrier systems are inducible by either low intracellular concentrations or repressed by high intracellular concentrations of the amino acid.  相似文献   

11.
Primary cultures of skeletal muscle obtained from neonatal rats possess a saturable process for active glucose uptake, the myotubes having a relatively high affinity for the substrate with a Km of 1 mM. The expression of the glucose transport system was most apparent after fusion of single myoblasts to multinucleated myotubes [3-4 days in vitro (DIV)], at which time glucose uptake increased sharply to reach plateau values at about 6-8 DIV. Treatment of the cells at age 6 DIV with triiodothyronine or thyroxine caused a marked increase in glucose uptake beginning 4 h after treatment and reaching a maximum at 24 h. Thyroid hormone-induced increase in glucose uptake was not reduced by either tetrodotoxin or verapamil, thus indicating that the effect was not secondary to the ability of the hormone to increase contractile activity. The effect of thyroid hormones was eliminated completely by inhibition of protein synthesis. The results indicate that thyroid hormones play an important role in regulation of glucose transport in skeletal muscle.  相似文献   

12.
Skeletal muscle stretch increases resting metabolism and causes hypertrophy. We have examined the effect of mechanical stretch in vitro on glucose transport activity and transporter contents in L6 muscle cells. Long-term (24-48 h) stretch-relaxation (25% maximal elongation at 30 cycles per min) of cell monolayers significantly increased glucose uptake by 1.6- to 2-fold in myotubes but not in myoblasts. The presence of serum was required for the stretch-relaxation induced increase in glucose uptake. Cycloheximide inhibited the mechanical stimulation of glucose uptake, and the latter response was not additive to the stimulatory effect of long-term exposure to insulin. GLUT1 and GLUT4 glucose transporter contents were not changed in total cell membranes from mechanically stimulated cells relative to controls. These results indicate that mechanical stimulation through passive stretch may be an important regulation of nutrient uptake in fetal myotubes independent of innervation.  相似文献   

13.
The properties of an L-alanine uptake system in Rhodobacter sphaeroides were studied and compared with those of H+/lactose symport in R. sphaeroides 4P1, a strain in which the lactose carrier of Escherichia coli has been cloned and functionally expressed (F. E. Nano, Ph.D. thesis, University of Illinois, Urbana, 1984). Previous studies indicated that both transport systems were active only when electron transfer took place in the respiratory or cyclic electron transfer chain, while uptake of L-alanine also required the presence of K+ (M. G. L. Elferink, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1986). The results presented in this paper offer an explanation for these findings. Transport of the nonmetabolizable L-alanine analog 2-alpha-aminoisobutyric acid (AIB) is mediated by a shock-sensitive transport system. The apparently unidirectional uptake of AIB results in accumulation levels which exceed 7 x 10(3). The finding of L-alanine-binding activity in the concentrated crude shock fluid indicates that L-alanine is taken up by a binding-protein-dependent transport system. Transport of the nonmetabolizable lactose analog methyl-beta-D-thiogalactopyranoside (TMG) by the lactose carrier under anaerobic conditions in the dark was observed in cells and membrane vesicles. This indicates that the H+/lactose symport system is active without electron transfer. Uptake of AIB, but not that of TMG, is inhibited by vanadate with a 50% inhibitory concentration of 50 microM, which suggests a role of a phosphorylated intermediate in AIB transport. Uptake of TMG and AIB is regulated by the internal pH. The initial rates of uptake increased with the internal pH, and and pKa values of 7.2 for TMG and 7.8 for AIB. At an internal pH of 7, no AIB uptake occurred, and the rate of TMG uptake was only 30% of the rate at an internal pH of 8. In a previous study, we found that K+ plays an essential role in regulating the internal pH (T. Abee, K. J. Hellingwerf, and W. N. Konings, J. Bacteriol. 170:5647-5653, 1988). The dependence of solute transport in R. sphaeroides on both K+ and activity of an electron transfer chain can be explained by an effect of the internal pH, which subsequently influences the activities of the lactose-and binding-protein-dependent L-alanine transport system.  相似文献   

14.
The effects of insulin and the somatomedins on differentiation of rat myoblasts were investigated in experiments on cells cloned from Yaffe's L6 line. Incubation for 48 hr with either insulin or Temin's multiplication stimulating activity (MSA), a member of the somatomedin family, caused a dramatic increase in myoblast fusion. This stimulation of differentiation is not a simple consequence of the increased cell density resulting from the effects of these hormones on myoblast proliferation, and the increase in fusion is not an effect common to all mitogens (FGF inhibits the process). Other somatomedins (human somatomedin C and insulin-like growth factor I), were as effective as MSA in stimulating differentiation. The somatomedins were active at concentrations in the range of their levels in fetal blood, in contrast to insulin, which was inactive at concentrations below 10?7, M. Growth hormone (GH) had no effect on muscle differentiation. In serum-free medium MM-1 (in which myoblasts maintain apparently normal morphology and metabolic activity), the very high levels of insulin required to stimulate differentiation could be replaced entirely by physiological levels (1.0 μg/ml) of MSA, further supporting our view that insulin at high concentrations serves primarily as an analogue of the somatomedins in stimulating the growth and development of muscle cells.  相似文献   

15.
The effect of epinephrine on the amino acid transport mediated by system A was investigated by determining the uptake of 2-amino [1-14C]isobutyric acid (AIB) in rat hepatocytes, freshly isolated at different stages of pre- and postnatal development. The data obtained show that the hormone increased AIB uptake, enhancing the Vmax, while Km was unchanged. This effect was evident in cells from adult, 18- to 20-day-old fetus, and neonate rat. Actinomycin D or cycloheximide abolished the hormone dependent increase. Experiments carried out with alpha- and beta-antagonists showed that the effect of epinephrine was beta-mediated in fetal life and alpha-mediated in adult life. Membrane binding experiments showed a higher value for epinephrine and beta-agonist dihydroalprenolol in the fetus versus the adult. The calcium depletion obtained after cell incubation with EGTA or calcium ionophore A23187 reduced the hormonal stimulation in the adult, and was ineffective in the prenatal period. An involvement of cAMP was present in the epinephrine modulation of AIB transport, both in adult and in fetal life.  相似文献   

16.
Amino acid uptake by the human placenta is known to occur via several transport mechanisms. However, regulation by extracellular factors has received relatively little attention. A recent report by this laboratory characterized the uptake of α-aminoisobutyric acid (AIB) stimulated by insulin in the cultured human placental trophoblast The current study evaluated the effect of insulin-like growth factor-1 (IGF-1) on AIB uptake in cultured human placental trophoblasts. Na+-dependent AIB uptake was significantly stimulated by IGF-l in a time-dependent manner, as early as 30 min after hormone exposure. The maximum effect was at 2–4 hr of continuous exposure to IGF-l and the stimulation was dependent upon IGF-1 concentration approaching maximal stimulation at 50 ng.ml?1. AIB uptake was inhibited by increasing concentrations of α-(methylamino)isobtyric acid (MeAIB). Approximately 75% of basal (unstimulated) Na+-dependent AIB uptake was inhibited by MeAIB. The IGF-1-stimulated increment above basal AIB uptake was completely inhibited by MeAIB. IGF-1 increased the maximum uptake yelocity but not Km. Using equimolar concentrations, stimulation was greater with IGF-1 then with IGF-2. Stimulation by IGF-1, but not insulin, was inhibited by anit-IGF-1 receptor antibody, indicating mediation via the IGF-1 receptor. H7, a nonspecific inhibitor of serine-threonine kinase, inhibited IGF-1-dependent stimulation of AIB uptake. In addition, calphostin C (a specific inhibitor of protein kinase C), but not H89 (a specific inhibitor of protein kinase A), inhibited the IGF-1 action. This study further characterizes regulated amino acid uptake by the human placental trophoblasts and demonstrates that the Na+-dependent component of AIB uptake is stimulated by physiologic concentrations of IGF-1. © 1995 Wiley-Liss Inc.  相似文献   

17.
  • 1.1. 1 mM 2-amino isobutyric add (AIB), glutamine or asparagine when preincubated for 3 hr with L1210 cells promoted a marked increase in the rate of spermidine uptake.
  • 2.2. Cycloheximide also increased the transport rate and completely prevented the increase due to AIB.
  • 3.3. Trifluoperazine and iso-H7 inhibited the uptake of spermidine, much less the uptake of AIB.
  • 4.4. Adenosine promoted an increase in the uptake of AIB, a decrease in that of spermidine.
  • 5.5. Hypotonic stress also increased the rate of spermidine transport. This modification was only partially prevented by cycloheximide.
  • 6.6. Okadaic arid had no effect on this increase, whereas it prevented the increase of ODC activity.
  相似文献   

18.
Several cationic lipids which are highly efficient for delivering genes in vitro do not increase gene delivery in vivo after an intramuscular injection. In order to elucidate the origin of this phenomenon, we have studied the cellular uptake and intracellular fate of cationic lipid/DNA complexes in vitro on myogenic mouse cells (myoblasts and myotubes) of the C2 cell line and of primary cultures. We used a cationic lipid with a spermine head group and its fluorescent analog, and a fluorescent plasmid obtained by nick-translation. In myoblasts, transgene expression was obtained and lipoplexes were internalized in cytoplasmic vesicles. In myotubes, no transgene expression could be detected and we observed an absence of lipoplex internalization. The in vitro uptake of cationic lipid was inversely correlated with the degree of fusion of C2 cell myotubes cultures.  相似文献   

19.
ABSTRACT. Leishmania tropica promastigotes transport α-aminoisobutyric acid (AIB), the nonmetabolizable analog of neutral amino acids, against a substantial concentration gradient. AIB is not incorporated into cellular material but accumulates within the cells in an unaltered form. Intracellular AIB exchanges with external AIB. Various energy inhibitors (amytal, HOQNO, KCN, DNP, CCCP, and arsenate) and sulfhydryl reagents (NEM, pCMB, and iodoacetate) severely inhibit uptake. The uptake system is saturable with reference to AIB-and the Lineweaver-Burk plots show biphasic kinetics suggesting the involvement of two transport systems. AIB shares a common transport system with alanine, cysteine, glycine, methionine, serine, and proline. Uptake is regulated by feedback inhibition and transinhibition.  相似文献   

20.
Growth factors, mitogens, and malignant transformation can alter the rate of amino acid uptake in mammalian cells. It has been suggested that the effects of these stimuli on proliferation are mediated by activation of Na+/H+ exchange. In lymphocytes, Na+/H+ exchange can also be activated by phorbol esters and by hypertonic media. To determine the relationship between the cation antiport and amino acid transport, we tested the effects of these agents on the uptake of alpha-aminoisobutyric acid (AIB), methyl-AIB, proline, and leucine in rat thymocytes. Both 12-O-tetradecanoylphorbol-13-acetate (TPA) and hypertonicity stimulated amino acid uptake through system A (AIB, proline, and methyl-AIB). In addition, TPA, but not hypertonicity, also elevated leucine uptake. The stimulation of the Na+ -dependent system A was not due to an increased inward electrochemical Na+ gradient. The effects of TPA and hypertonic treatment were not identical: Stimulation of AIB uptake by TPA was observed within minutes, whereas at least 1 hr was required for the effect of hypertonicity to become noticeable. Moreover, stimulation by hypertonicity but not that by TPA, was partially inhibited by cycloheximide, suggesting a role of protein synthesis. That stimulation of Na+/H+ exchange does not mediate the effects on amino acid transport is suggested by two findings: 1) the stimulation of AIB uptake was not prevented by concentrations of amiloride or of 5-(N,N-disubstituted) amiloride analogs that completely inhibit the Na+/H+ antiport and 2) conditions that mimic the effect of the antiport, namely, increasing [Na+]i or raising pHi failed to stimulate amino acid uptake. Thus, in lymphocytes, activation of Na+/H+ exchange and stimulation of amino acid transport are not casually related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号