首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase clamp onto DNA. Sequence similarities suggest the biochemical functions of an RSR (Rad17–Rfc2–Rfc3–Rfc4–Rfc5) complex and an RHR heterotrimer (Rad1–Hus1–Rad9) may be similar to that of RFC and PCNA, respectively. RSR purified from human cells loads RHR onto DNA in an ATP-, replication protein A-, and DNA structure-dependent manner. Interestingly, RSR and RFC differed in their ATPase activities and displayed distinct DNA substrate specificities. RSR preferred DNA substrates possessing 5′ recessed ends whereas RFC preferred 3′ recessed end DNA substrates. Characterization of the biochemical loading reaction executed by the checkpoint clamp loader RSR suggests new insights into the mechanisms underlying recognition of damage-induced DNA structures and signaling to cell cycle controls. The observation that RSR loads its clamp onto a 5′ recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes.  相似文献   

2.
The DNA damage clamp loader replication factor C (RFC-Rad24) consists of the Rad24 protein and the four small Rfc2-5 subunits of RFC. This complex loads the heterotrimeric DNA damage clamp consisting of Rad17, Mec3, and Ddc1 (Rad17/3/1) onto partial duplex DNA in an ATP-dependent manner. Interactions between the clamp loader and the clamp have been proposed to mirror those of the replication clamp loader RFC and the sliding clamp proliferating cell nuclear antigen (PCNA). In that system, three ATP molecules bound to the Rfc2, Rfc3, and Rfc4 subunits are necessary and sufficient for efficient loading of PCNA, whereas ATP binding to Rfc1 is not required. In contrast, in this study, we show that mutant RFC-Rad24 with a rad24-K115E mutation in the ATP-binding domain of Rad24 shows defects in the ATPase of the complex and is defective for interaction with Rad17/3/1 and for loading of the checkpoint clamp. A similar defect was measured with a mutant RFC-Rad24 clamp loader carrying a rfc4K55R ATP-binding mutation, whereas the rfc4K55E clamp loader showed partial loading activity, in agreement with genetic studies of these mutants. These studies show that ATP utilization by the checkpoint clamp/clamp loader system is effectively different from that by the structurally analogous replication system.  相似文献   

3.
The eukaryotic replication factor C (RFC) clamp loader is an AAA+ spiral-shaped heteropentamer that opens and closes the circular proliferating cell nuclear antigen (PCNA) clamp processivity factor on DNA. In this study, we examined the roles of individual RFC subunits in opening the PCNA clamp. Interestingly, Rfc1, which occupies the position analogous to the delta clamp-opening subunit in the Escherichia coli clamp loader, is not required to open PCNA. The Rfc5 subunit is required to open PCNA. Consistent with this result, Rfc2.3.4.5 and Rfc2.5 subassemblies are capable of opening and unloading PCNA from circular DNA. Rfc5 is positioned opposite the PCNA interface from Rfc1, and therefore, its action with Rfc2 in opening PCNA indicates that PCNA is opened from the opposite side of the interface that the E. coli delta wrench acts upon. This marks a significant departure in the mechanism of eukaryotic and prokaryotic clamp loaders. Interestingly, the Rad.RFC DNA damage checkpoint clamp loader unloads PCNA clamps from DNA. We propose that Rad.RFC may clear PCNA from DNA to facilitate shutdown of replication in the face of DNA damage.  相似文献   

4.
Boerckel J  Walker D  Ahmed S 《Genetics》2007,176(1):703-709
Subunits of the Rad9/Rad1/Hus1 (9-1-1) proliferating cell nuclear antigen (PNCA)-like sliding clamp are required for DNA damage responses and telomerase-mediated telomere replication in the nematode Caenorhabditis elegans. PCNA sliding clamps are loaded onto DNA by a replication factor C (RFC) clamp loader. The C. elegans Rad17 RFC clamp loader homolog, hpr-17, functions in the same pathway as the 9-1-1 complex with regard to both the DNA damage response and telomerase-mediated telomere elongation. Thus, hpr-17 defines an RFC-like complex that facilitates telomerase activity in vivo in C. elegans.  相似文献   

5.
Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex   总被引:9,自引:0,他引:9  
Genotoxic stress activates checkpoint signaling pathways that block cell cycle progression, trigger apoptosis, and regulate DNA repair. Studies in yeast and humans have shown that Rad9, Hus1, Rad1, and Rad17 play key roles in checkpoint activation. Three of these proteins-Rad9, Hus1, and Rad1-interact in a heterotrimeric complex (dubbed the 9-1-1 complex), which resembles a PCNA-like sliding clamp, whereas Rad17 is part of a clamp-loading complex that is related to the PCNA clamp loader, replication factor-C (RFC). In response to genotoxic damage, the 9-1-1 complex is loaded around DNA by the Rad17-containing clamp loader. The DNA-bound 9-1-1 complex then facilitates ATR-mediated phosphorylation and activation of Chk1, a protein kinase that regulates S-phase progression, G2/M arrest, and replication fork stabilization. In addition to its role in checkpoint activation, accumulating evidence suggests that the 9-1-1 complex also participates in DNA repair. Taken together, these findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.  相似文献   

6.
The repair of damaged DNA is coupled to the completion of DNA replication by several cell cycle checkpoint proteins, including, for example, in fission yeast Rad1Sp, Hus1Sp, Rad9Sp and Rad17Sp. We have found that these four proteins are conserved with protein sequences throughout eukaryotic evolution. Using computational techniques, including fold recognition, comparative modeling and generalized sequence profiles, we have made high confidence structure predictions for the each of the Rad1, Hus1 and Rad9 protein families (Rad17Sc, Mec3Sc and Ddc1Sc in budding yeast, respectively). Each of these families was found to share a common protein fold with that of PCNA, the sliding clamp protein that tethers DNA polymerase to its template. We used previously reported genetic and biochemical data for these proteins from yeast and human cells to predict a heterotrimeric PCNA-like ring structure for the functional Rad1/Rad9/Hus1 complex and to determine their exact order within it. In addition, for each individual protein family, contact regions with neighbors within the PCNA-like ring were identified. Based on a molecular model for Rad17Sp, we concluded that members of this family, similar to the subunits of the RFC clamp-loading complex, are capable of coupling ATP binding with conformational changes required to load a sliding clamp onto DNA. This model substantiates previous findings regarding the behavior of Rad17 family proteins upon DNA damage and within the RFC complex of clamp-loading proteins.  相似文献   

7.
Clamp loaders from all domains of life load clamps onto DNA. The clamp tethers DNA polymerases to DNA to increase the processivity of synthesis as well as the efficiency of replication. Here, we investigated proliferating cell nuclear antigen (PCNA) binding and opening by the Saccharomyces cerevisiae clamp loader, replication factor C (RFC), and the DNA damage checkpoint clamp loader, Rad24-RFC, using two separate fluorescence intensity-based assays. Analysis of PCNA opening by RFC revealed a two-step reaction in which RFC binds PCNA before opening PCNA rather than capturing clamps that have transiently and spontaneously opened in solution. The affinity of RFC for PCNA is about an order of magnitude lower in the absence of ATP than in its presence. The affinity of Rad24-RFC for PCNA in the presence of ATP is about an order magnitude weaker than that of RFC for PCNA, similar to the RFC-PCNA interaction in the absence of ATP. Importantly, fewer open clamp loader-clamp complexes are formed when PCNA is bound by Rad24-RFC than when bound by RFC.  相似文献   

8.
Eukaryotic replication factor C is the heteropentameric complex that loads the replication clamp proliferating cell nuclear antigen (PCNA) onto primed DNA. In this study we used a derivative, designated RFC, with a N-terminal truncation of the Rfc1 subunit removing a DNA-binding domain not required for clamp loading. Interactions of yeast RFC with PCNA and DNA were studied by surface plasmon resonance. Binding of RFC to PCNA was stimulated by either adenosine (3-thiotriphosphate) (ATPgammaS) or ATP. RFC bound only to primer-template DNA coated with the single-stranded DNA-binding protein RPA if ATPgammaS was also present. Binding occurred without dissociation of RPA. ATP did not stimulate binding of RFC to DNA, suggesting that hydrolysis of ATP dissociated DNA-bound RFC. However, when RFC and PCNA together were flowed across the DNA chip in the presence of ATP, a signal was observed suggesting loading of PCNA by RFC. With ATPgammaS present instead of ATP, long-lived response signals were observed indicative of loading complexes arrested on the DNA. A primer with a 3' single-stranded extension also allowed loading of PCNA; yet turnover of the reaction intermediates was dramatically slowed down. Filter binding experiments and analysis of proteins bound to DNA-magnetic beads confirmed the conclusions drawn from the surface plasmon resonance studies.  相似文献   

9.
CTF7/ECO1 is an essential yeast gene required for the establishment of sister chromatid cohesion. The findings that CTF7/ECO1, POL30 (PCNA), and CHL12/CTF18 (a replication factor C [RFC] homolog) genetically interact provided the first evidence that the processes of cohesion establishment and DNA replication are intimately coupled-a link now confirmed by other studies. To date, however, it is unknown how Ctf7p/Eco1p function is coupled to DNA replication or whether Ctf7p/Eco1p physically associates with any components of the DNA replication machinery. Here, we report that Ctf7p/Eco1p associates with proteins that perform partially redundant functions in DNA replication. Chl12p/Ctf18p combines with Rfc2p to Rfc5p to form one of three independent RFC complexes. By chromatographic methods, Ctf7p/Eco1p was found to associate with Chl12/Ctf18p and with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. The association between Ctf7p/Eco1p and this RFC complex is biologically relevant in that (i) Ctf7p/Eco1p cosediments with Chl12p/Ctf18p in vivo and (ii) rfc5-1 mutant cells exhibit precocious sister separation. Previous studies revealed that Rfc1p or Rad24p associates with Rfc2p to Rfc5p to form two other RFC complexes independent of Ctf18p-RFC complexes. These Rfc1p-RFC and Rad24p-RFC complexes function in DNA replication or repair and DNA damage checkpoint pathways. Importantly, Ctf7p/Eco1p also associates with Rfc1p and Rad24p, suggesting that these RFC complexes also play critical roles in cohesion establishment. The associations between Ctf7p/Eco1p and RFC subunits provide novel evidence regarding the physical linkage between cohesion establishment and DNA replication. Furthermore, the association of Ctf7p/Eco1p with each of three RFC complexes supplies new insights into the functional redundancy of RFC complexes in cohesion establishment.  相似文献   

10.
DNA damage activates cell cycle checkpoints that prevent progression through the cell cycle. In yeast, the DNA damage checkpoint response is regulated by a series of genes that have mammalian homologs, including rad1, rad9, hus1, and rad17. On the basis of sequence homology, yeast and human Rad1, Rad9, and Hus1 protein homologs are predicted to structurally resemble the sliding clamp PCNA. Likewise, Rad17 homologs have extensive homology with replication factor C (RFC) subunits (p36, p37, p38, p40, and p140), which form a clamp loader for PCNA. These observations predict that Rad1, Hus1, and Rad9 might interact with Rad17 as a clamp-clamp loader pair during the DNA damage response. In this report, we demonstrate that endogenous human Rad17 (hRad17) interacts with the PCNA-related checkpoint proteins hRad1, hRad9, and hHus1. Mutational analysis of hRad1 and hRad17 demonstrates that this interaction has properties similar to the interaction between RFC and PCNA, a well characterized clamp-clamp loader pair. Moreover, we show that DNA damage affects the association of hRad17 with the clamp-like checkpoint proteins. Collectively, these data provide the first experimental evidence that hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRad9 in manner similar to the interaction between RFC and PCNA.  相似文献   

11.
Many proteins involved in DNA replication and repair undergo post-translational modifications such as phosphorylation and ubiquitylation. Proliferating cell nuclear antigen (PCNA; a homotrimeric protein that encircles double-stranded DNA to function as a sliding clamp for DNA polymerases) is monoubiquitylated by the RAD6-RAD18 complex and further polyubiquitylated by the RAD5-MMS2-UBC13 complex in response to various DNA-damaging agents. PCNA mono- and polyubiquitylation activate an error-prone translesion synthesis pathway and an error-free pathway of damage avoidance, respectively. Here we show that replication factor C (RFC; a heteropentameric protein complex that loads PCNA onto DNA) was also ubiquitylated in a RAD18-dependent manner in cells treated with alkylating agents or H(2)O(2). A mutant form of RFC2 with a D228A substitution (corresponding to a yeast Rfc4 mutation that reduces an interaction with replication protein A (RPA), a single-stranded DNA-binding protein) was heavily ubiquitylated in cells even in the absence of DNA damage. Furthermore RFC2 was ubiquitylated by the RAD6-RAD18 complex in vitro, and its modification was inhibited in the presence of RPA. The inhibitory effect of RPA on RFC2 ubiquitylation was relatively specific because RAD6-RAD18-mediated ubiquitylation of PCNA was RPA-insensitive. Our findings suggest that RPA plays a regulatory role in DNA damage responses via repression of RFC2 ubiquitylation in human cells.  相似文献   

12.
Replication factor C (RFC) is a five-subunit complex that loads proliferating cell nuclear antigen (PCNA) clamps onto primer-template DNA (ptDNA) during replication. RFC subunits belong to the AAA(+) superfamily, and their ATPase activity drives interactions between the clamp loader, the clamp, and the ptDNA, leading to topologically linked PCNA·ptDNA. We report the kinetics of transient events in Saccharomyces cerevisiae RFC-catalyzed PCNA loading, including ATP-induced RFC activation, PCNA opening, ptDNA binding, ATP hydrolysis, PCNA closing, and PCNA·ptDNA release. This detailed perspective enables assessment of individual RFC-A, RFC-B, RFC-C, RFC-D, and RFC-E subunit functions in the reaction mechanism. Functions have been ascribed to RFC subunits previously based on a steady-state analysis of 'arginine-finger' ATPase mutants; however, pre-steady-state analysis provides a different view. The central subunit RFC-C serves as a critical swivel point in the clamp loader. ATP binding to this subunit initiates RFC activation, and the clamp loader adopts a spiral conformation that stabilizes PCNA in a corresponding open spiral. The importance of RFC subunit response to ATP binding decreases as RFC-C>RFC-D>RFC-B, with RFC-A being unnecessary. RFC-C-dependent activation of RFC also enables ptDNA binding, leading to the formation of the RFC·ATP·PCNA(open)·ptDNA complex. Subsequent ATP hydrolysis leads to complex dissociation, with RFC-D activity contributing the most to rapid ptDNA release. The pivotal role of the RFC-B/C/D subunit ATPase core in clamp loading is consistent with the similar central location of all three ATPase active subunits of the Escherichia coli clamp loader.  相似文献   

13.
Rad24 functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. Here, analysis of Rad24 in whole cell extracts demonstrated that its mass was considerably greater than its predicted molecular weight, suggesting that Rad24 is a component of a protein complex. The Rad24 complex was purified to homogeneity. In addition to Rad24, the complex included polypeptides of 40 kDa and 35 kDa. The 40 kDa species was found by mass spectrometry to contain Rfc2 and Rfc3, subunits of replication factor C (RFC), a five subunit protein that is required for the loading of polymerases onto DNA during replication and repair [3]. We hypothesised that other RFC subunits, all of which share sequence homologles with Rad24, might also be components of the Rad24 complex. Reciprocal co-immunoprecipitation studies were performed using extracts prepared from strains containing epitope-tagged RFC proteins. These experiments showed that the small RFC proteins, Rfc2, Rfc3, Rfc4 and Rfc5, interacted with Rad24, whereas the Rfc1 subunit did not. We suggest that this RFC-like Rad24 complex may function as a structure-specific sensor in the DNA damage checkpoint pathway.  相似文献   

14.
RAD24 has been identified as a gene essential for the DNA damage checkpoint in budding yeast. Rad24 is structurally related to subunits of the replication factor C (RFC) complex, and forms an RFC-related complex with Rfc2, Rfc3, Rfc4, and Rfc5. The rad24Delta mutation enhances the defect of rfc5-1 in the DNA replication block checkpoint, implicating RAD24 in this checkpoint. CHL12 (also called CTF18) encodes a protein that is structurally related to the Rad24 and RFC proteins. We show here that although neither chl12Delta nor rad24Delta single mutants are defective, chl12Delta rad24Delta double mutants become defective in the replication block checkpoint. We also show that Chl12 interacts physically with Rfc2, Rfc3, Rfc4, and Rfc5 and forms an RFC-related complex which is distinct from the RFC and RAD24 complexes. Our results suggest that Chl12 forms a novel RFC-related complex and functions redundantly with Rad24 in the DNA replication block checkpoint.  相似文献   

15.
The RFC5 gene encodes a small subunit of replication factor C (RFC) complex in Saccharomyces cerevisiae and has been shown to be required for the checkpoints which respond to replication block and DNA damage. Here we describe the isolation of RAD24, known to play a role in the DNA damage checkpoint, as a dosage-dependent suppressor of rfc5-1. RAD24 overexpression suppresses the sensitivity of rfc5-1 cells to DNA-damaging agents and the defect in DNA damage-induced Rad53 phosphorylation. Rad24, like Rfc5, is required for the regulation of Rad53 phosphorylation in response to DNA damage. The Rad24 protein, which is structurally related to the RFC subunits, interacts physically with RFC subunits Rfc2 and Rfc5 and cosediments with Rfc5. Although the rad24Δ mutation alone does not cause a defect in the replication block checkpoint, it does enhance the defect in rfc5-1 mutants. Furthermore, overexpression of RAD24 suppresses the rfc5-1 defect in the replication block checkpoint. Taken together, our results demonstrate a physical and functional interaction between Rad24 and Rfc5 in the checkpoint pathways.  相似文献   

16.
The multi-subunit replication factor C (RFC) complex loads circular proliferating cell nuclear antigen (PCNA) clamps onto DNA where they serve as mobile tethers for polymerases and coordinate the functions of many other DNA metabolic proteins. The clamp loading reaction is complex, involving multiple components (RFC, PCNA, DNA, and ATP) and events (minimally: PCNA opening/closing, DNA binding/release, and ATP binding/hydrolysis) that yield a topologically linked clamp·DNA product in less than a second. Here, we report pre-steady-state measurements of several steps in the reaction catalyzed by Saccharomyces cerevisiae RFC and present a comprehensive kinetic model based on global analysis of the data. Highlights of the reaction mechanism are that ATP binding to RFC initiates slow activation of the clamp loader, enabling it to open PCNA (at ~2 s(-1)) and bind primer-template DNA (ptDNA). Rapid binding of ptDNA leads to formation of the RFC·ATP·PCNA(open)·ptDNA complex, which catalyzes a burst of ATP hydrolysis. Another slow step in the reaction follows ATP hydrolysis and is associated with PCNA closure around ptDNA (8 s(-1)). Dissociation of PCNA·ptDNA from RFC leads to catalytic turnover. We propose that these early and late rate-determining events are intramolecular conformational changes in RFC and PCNA that control clamp opening and closure, and that ATP binding and hydrolysis switch RFC between conformations with high and low affinities, respectively, for open PCNA and ptDNA, and thus bookend the clamp loading reaction.  相似文献   

17.
Human checkpoint Rad proteins are thought to function as damage sensors in the DNA damage checkpoint response pathway. The checkpoint proteins hRad9, hHus1, and hRad1 have limited homology to the replication processivity factor proliferating cell nuclear antigen (PCNA), and hRad17 has homology to replication factor C (RFC). Such observations have led to the proposal that these checkpoint Rad proteins may function similarly to their replication counterparts during checkpoint control. We purified two complexes formed by the checkpoint Rad proteins and investigated their structures using an electron microscopic preparative method in which the complexes are sprayed from a glycerol solution onto very thin carbon foils, decorated in vacuo with tungsten, and imaged at low voltage. We found that the hRad9, hHus1, and hRad1 proteins make a trimeric ring structure (checkpoint 9-1-1 complex) reminiscent of the PCNA ring. Similarly we found that hRad17 makes a heteropentameric complex with the four RFC small subunits (hRad17-RFC) with a deep groove or cleft and is similar to the RFC clamp loader. Therefore, our results demonstrate structural similarity between the checkpoint Rad complexes and the PCNA and RFC replication factors and thus provide further support for models proposing analogous functions for these complexes.  相似文献   

18.
Replication and related processes in eukaryotic cells require replication factor C (RFC) to load a molecular clamp for DNA polymerase in an ATP-driven process, involving multiple molecular interactions. The detailed understanding of this mechanism is hindered by the lack of data regarding structure, mutual arrangement, and dynamics of the players involved. In this study, we analyzed interactions that take place during loading onto DNA of either the PCNA clamp or the Rad9-Rad1-Hus1 checkpoint complex, using computationally derived molecular models. Combining the modeled structures for each RFC subunit with known structural, biochemical, and genetic data, we propose detailed models of how two of the RFC subunits, RFC1 and RFC3, interact with the C-terminal regions of PCNA. RFC1 is predicted to bind PCNA similarly to the p21-PCNA interaction, while the RFC3-PCNA binding is proposed to be similar to the E. coli delta-beta interaction. Additional sequence and structure analysis, supported by experimental data, suggests that RFC5 might be the third clamp loader subunit to bind the equivalent PCNA region. We discuss functional implications stemming from the proposed model of the RFC1-PCNA interaction and compare putative clamp-interacting regions in RFC1 and its paralogs, Rad17 and Ctf18. Based on the individual intermolecular interactions, we propose RFC and PCNA arrangement that places three RFC subunits in association with each of the three C-terminal regions in PCNA. The two other RFC subunits are positioned at the two PCNA interfaces, with the third PCNA interface left unobstructed. In addition, we map interactions at the level of individual subunits between the alternative clamp loader/clamp system, Rad17-RFC(2-5)/Rad9-Rad1-Hus1. The proposed models of interaction between two clamp/clamp loader pairs provide both structural framework for interpretation of existing experimental data and a number of specific findings that can be subjected to direct experimental testing.  相似文献   

19.
RAD24 and RFC5 are required for DNA damage checkpoint control in the budding yeast Saccharomyces cerevisiae. Rad24 is structurally related to replication factor C (RFC) subunits and associates with RFC subunits Rfc2, Rfc3, Rfc4, and Rfc5. rad24Delta mutants are defective in all the G(1)-, S-, and G(2)/M-phase DNA damage checkpoints, whereas the rfc5-1 mutant is impaired only in the S-phase DNA damage checkpoint. Both the RFC subunits and Rad24 contain a consensus sequence for nucleoside triphosphate (NTP) binding. To determine whether the NTP-binding motif is important for Rad24 function, we mutated the conserved lysine(115) residue in this motif. The rad24-K115E mutation, which changes lysine to glutamate, confers a complete loss-of-function phenotype, while the rad24-K115R mutation, which changes lysine to arginine, shows no apparent phenotype. Although neither rfc5-1 nor rad24-K115R single mutants are defective in the G(1)- and G(2)/M-phase DNA damage checkpoints, rfc5-1 rad24-K115R double mutants become defective in these checkpoints. Coimmunoprecipitation experiments revealed that Rad24(K115R) fails to interact with the RFC proteins in rfc5-1 mutants. Together, these results indicate that RFC5, like RAD24, functions in all the G(1)-, S- and G(2)/M-phase DNA damage checkpoints and suggest that the interaction of Rad24 with the RFC proteins is essential for DNA damage checkpoint control.  相似文献   

20.
The eukaryotic sliding DNA clamp, proliferating cell nuclear antigen (PCNA), is essential for DNA replication and repair synthesis. In order to load the ring-shaped, homotrimeric PCNA onto the DNA double helix, the ATPase activity of the replication factor C (RFC) clamp loader complex is required. Although the recruitment of PCNA by RFC to DNA replication sites has well been documented, our understanding of its recruitment during DNA repair synthesis is limited. In this study, we analyzed the accumulation of endogenous and fluorescent-tagged proteins for DNA repair synthesis at the sites of DNA damage produced locally by UVA-laser micro-irradiation in HeLa cells. Accumulation kinetics and in vitro pull-down assays of the large subunit of RFC (RFC140) revealed that there are two distinct modes of recruitment of RFC to DNA damage, a simultaneous accumulation of RFC140 and PCNA caused by interaction between PCNA and the extreme N-terminus of RFC140 and a much faster accumulation of RFC140 than PCNA at the damaged site. Furthermore, RFC140 knock-down experiments showed that PCNA can accumulate at DNA damage independently of RFC. These results suggest that immediate accumulation of RFC and PCNA at DNA damage is only partly interdependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号