首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicateins, the spicule-forming proteins from marine demosponges capable to polymerize silica, are popular objects of biomineralization studies due to their ability to form particles varied in shape and composition under physiological conditions. Despite the occurrence of the many approaches to nanomaterial synthesis using silicateins, biochemical properties of this protein family are poorly characterized. The main reason for this is that tetraethyl orthosilicate (TEOS), the commonly used silica acid precursor, is almost insoluble in water and thus is poorly available for the protein. To solve this problem, we synthesized new water-soluble silica precursor, tetra(glycerol)orthosilicate (TGS), and characterized biochemical properties of the silicatein A1 from marine sponge Latrunculia oparinae. Compared to TEOS, TGS ensured much greater activity of silicatein and was less toxic for the mammalian cell culture. We evaluated optimum conditions for the enzyme - pH range, temperature and TGS concentration. We concluded that TGS is a useful silica acid precursor that can be used for silica particles synthesis and in vivo applications.  相似文献   

2.
A method for rapid isolation of glyco- and phospholipids from potato leaves by a two-fold separation in a thin layer of silica gel is described. Using gas-liquid chromatography, the fatty acid compositions of monogalactosyldiglyceride, digalactosyldiglyceride, sulfolipid, phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl inositol, diphosphatidyl glycerol, phosphatidic acid and non-identified lipid from potato leaves were determined. The monogalactosyl diglyceride was found to contain up to 25% of 7,10,13-hexadecatrienic acid. Trans-3-hexadecenic acid as well as phosphatidyl glycerol is a constituent component of phosphatidic acid, diphosphatidyl glycerol and the non-identified lipid.  相似文献   

3.
Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.  相似文献   

4.
Extracellular bacterial lipases are promising biocatalysts for industry, because they are stable and active enzymes from easily available sources. A lipase from Bacillus stearothermophilus MC7 was immobilized on four polymer carriers by physical adsorption: chitosan, DEAE-cellulose, polypropylene, and polyurethane. The four biocatalysts differ in their hydrolytic activity against long-chain and short-chain triglycerides. Lipase MC7 immobilized on polypropylene (PP-MC7) stands out with its high activity against tributirin. According to the preliminary data, all four preparations were suitable for application in the test reaction of acidolysis of triolein with caprylic acid. The highest degree of conversion of the initial triolein was achieved in the presence of PP-MC7 preparation—50%. But variation of the reaction conditions did not lead to synthesis of the target di-substituted product (dicapryloyl-oleoylglycerol, COC). Reaction proceeds as a selective mono-substitution in the glycerol backbone.  相似文献   

5.
A silica gel-based substrate feeding system was developed to prevent methanol inhibiting the catalyst during enzymatic biodiesel synthesis. In the system, silica gel swelled upon methanol addition and subsequently released it in a controlled manner to prevent excess methanol affecting the enzyme. Biodiesel was synthesized by the enzymatic transesterification of canola oil with methanol. For this reaction, enzyme loading, methanol/oil molar ratio, silica gel dosage, glycerol content, and methanol feeding method were tested using commercial immobilized enzymes (Novozym 435 and Lipozyme RM IM from Novozymes). The results showed that conversion was highest with controlled substrate feeding rather than direct methanol addition, suggesting that the method developed here can easily prevent enzyme inhibition by limiting methanol concentration to an acceptable level.  相似文献   

6.
Monoglyceride synthesis by Rhyzomucor miehei lipase was investigated via direct esterification between glycerol (adsorbed onto silica gel) and oleic acid in organic solvents. The main difficulty is to avoid the unwanted production of di- and tri-glycerides. It was demonstrated that an increase in solvent polarity, using mixtures of n-hexane and 2-methyl-2-butanol (2M2B), improves drastically the selectivity toward monoglyceride formation. In pure n-hexane, the monoglyceride represents only 6 molar % of the total products at the thermodynamic equilibrium (34 and 60% for di- and tri-glyceride respectively). Use of an equivolume mixture of n-hexane/2M2B enables a product mixture to be obtained containing 94% of monoglyceride at equilibrium (2.4 and 0% for di- and tri-glyceride respectively). This positive effect is counterbalanced by a decrease both in initial velocities and in substrate conversion at thermodynamic equilibrium.A modeling, able to predict the three thermodynamic equilibria governing the 3 consecutive reactions, based on activity coefficient calculations using the UNIFAC model, is proposed. It takes into account both the partition of water between solvent and immobilized catalyst, and the partition of glycerol between solvent and silica gel. A good correlation with experimental data obtained in n-hexane/2M2B mixtures was observed.  相似文献   

7.
A new zymography method for lipases and esterases was developed on the basis of the esterification reaction between fatty acids and alcohols. The enzymes were separated by SDS-PAGE and native PAGE. The gel was washed and then incubated in an aqueous solution containing fatty acids (oleic acid 18:1 or caprylic acid 8:0) and dodecanol. Synthesis was visualized by in situ precipitation of water-insoluble and non-diffusible fatty acid esters, such as dodecyl oleate and dodecyl octanoate. The synthesis activity-based zymography was confirmed with different enzyme samples, including commercial lipase preparations, purified recombinant lipase and cutinase, and crude culture supernatants of lipolytic enzyme-producing soil bacteria.  相似文献   

8.
Acyl modification of the sn-2 position in phospholipids (PLs) was conducted by acidolysis reaction using immobilized phospholipase A(2) (PLA(2)) as the catalyst. In the first stage we screened different carriers for their ability to immobilize PLA(2). Several carriers were able to fix the enzyme and maintain catalytic activity; however, the final choice of carrier for the continued work was a non-ionic weakly polar macroreticular resin. Response surface methodology was applied to evaluate the influence of substrate ratio, reaction temperature, and water addition during acidolysis reaction between caprylic acid and soybean phosphatidylcholine (PC). Reaction temperature and water addition had significant effect on acidolysis reaction, however no effect was observed for substrate ratio (mol caprylic acid/mol PC) in range tested. In general an inverse relationship between incorporation of caprylic acid and PC recovery was observed. Highest incorporation obtained during acidolysis reactions was 36%. Such incorporation could be obtained under reaction temperature, 45 degrees C; substrate ratio, 9mol/mol caprylic acid/PC; water addition of 2%; 30wt.% immobilized enzyme; and reaction time, 48h. The yield under these conditions was however only 29%. Lysophosphatidylcholine (LPC) was the major by-product formed during the reaction. Incorporation of acyl donor into LPC was very low (<4%), which indicates that acyl migration is only a minor problem for PLA(2) catalyzed synthesis reaction. Conjugated linoleic acid and docosahexaenoic acid were also tested as acyl donors, and were able to be incorporated into PC with 30 and 20%, respectively.  相似文献   

9.
Preliminary investigations on the regioselectiviy of various lipases were performed. Ten commercial lipases from different origins, including three immobilized lipases, were tested by esterification reaction between caprylic acid and propyl or isopropyl alcohol in n-hexane. Reaction products were analyzed with a gas chromatograph. Best yields were obtained with immobilized lipase IM60 from Rhizomucor miehei. Therefore, this enzyme was chosen as biocatalyst for a second step of regioselectiviy study with propylene glycol which bears primary and secondary alcohol groups. It was shown, by using several solvents, that polarity could influence the product profile in situations in which multiple products of various polarities can be formed. Furthermore, the major role of silica gel in reaction mixture was established.  相似文献   

10.
An improved safe method that does not contaminate the environment with cadmium chloride, a toxic heavy metal salt, was developed for the synthesis of phosphatidylcholine (PC). PC was synthesized from sn-glycero-3-phosphocholine (GPC) and fatty acid in one step under mild conditions without the use of cadmium chloride. GPC was prepared from egg yolk PC and adsorbed by kieselguhr in a Teflon vessel. The GPC on kieselguhr was acylated with fatty acid in the presence of two reagents, dicyclohexylcarbodiimide for synthesis of fatty acid anhydride and 4-dimethylaminopyridine as an acylating catalyst, at 30 degrees C overnight. The PC thus produced was purified by silica gel column chromatography. The yield of dioleoyl PC was 90% based on the starting material, GPC.  相似文献   

11.
An intracellular glycerol ester hydrolase (lipase) from Propionibacterium shermanii was recovered from cell-free extracts and purified by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography on diethylaminoethylcellulose. Maximum enzyme activity was observed at pH 7.2 and 47 C when an emulsion of tributyrin was used as substrate. The enzyme was stable between pH 5.5 and 8. Heating the enzyme solution at 45 C for 10 min resulted in a 75% decrease in activity. Maximum rate of hydrolysis of triglycerides was observed on tripropionin, followed in order by tributyrin, tricaproin, and tricaprylin. The lipase was strongly inhibited by mercury and arsenicals, but specific sulfhydryl reagents had little or no inhibiting effect on the enzyme activity. The enzyme also showed some esterase activity, but the hydrolysis of substrates in solution was small as compared to the hydrolysis of substrates in emulsion.  相似文献   

12.
A convenient method for the synthesis of the title intermediate 4 was described. The key steps of this synthesis involved: (1) regioselective addition reaction of arylzinc reagent to quinolic anhydride in 42% isolated yield, (2) conversion of a ketoacid to an enone, which was achieved in 65% yield by intramolecular Knoevenagel reaction of beta-ketoester generated by condensation of an acid imidazolide with an ester enolate, followed by dehydration assisted with silica gel, and (3) stereoselective reduction of an allyl alcohol in 75% yield with zinc under acidic conditions. This synthesis enabled us to provide hundreds of grams of without chromatographic purification.  相似文献   

13.
In this study, we attempted the efficient production of monoacylglycerols (MAG) via the lipase-catalyzed esterification of glycerol with fatty acids obtained from sardine oil. The reaction factors that influenced MAG synthesis were the glycerol to fatty acid mole ratio, amount of enzyme, organic solvent, temperature, and the type of lipase used. Porcine pancreas lipase was selected to catalyze this reaction. The optimum conditions we determined for MAG synthesis were a glycerol to fatty acid mole ratio of 1∶6, 100 mg/mL of lipase, and 30°C in dioxane. Under these conditions, the MAG content was 68% (w/w) after 72 h of reaction. The MAGs synthesized via the lipase-catalyzed esterification of glycerol with fatty acids included monomyristin, monopamiltin, and monoolein, as identified by GCMS.  相似文献   

14.
Summary Some metabolic properties of both suspended and immobilized aerobically and anaerobically growingEscherichia coli cells were investigated. Metabolic activity was found to be substantially different whenE. coli cells were immobilized in alginate. Cells grown immobilized in alginate, and then released from the gel, synthesized 1.6 (aerobic growth) and 4.9 (anaerobic growth) times as much -galactosidase per cell in response to induction as did suspended cells. Under both aerobic and anaerobic conditions, the cell yield from glycerol for immobilized cells was half that for suspended cells. At specific growth rates that were not significantly different from those of suspended cells, immobilized cells consumed glycerol at twice the rate of suspended cells. Immobilized cells produced elevated quantities of acetate, pyruvate, and lactate. Interpretation of these findings is discussed in terms of the kinetics of energy metabolism and the regulation of inducible protein synthesis inE. coli.  相似文献   

15.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

16.
The polar glycolipids were isolated from the thermophilic bacteria Meiothermus taiwanensis ATCC BAA-400 by ethanol extraction and purified by Sephadex LH-20 and silica gel column chromatography. The fatty acid composition of O-acyl groups in the glycolipids was obtained by gas chromatography mass spectroscopy analysis on their methyl esters derived from methanolysis and was made mainly of C(15:0) (34.0%) and C(17:0) (42.3%) fatty acids, with the majority as branched fatty acids (over 80%). Removal of O-acyl groups under mild basic conditions provided two glycolipids, which differ only in N-acyl substitution on a hexosamine. Electrospray mass spectroscopy analysis revealed that one has a C(17:0) N-acyl group and the other hydroxy C(17:0) in a ratio of about 1 : 3.5. Furthermore, complete de-lipidation with strong base followed by selective N-acetylation resulted in a homogeneous tetraglycosyl glycerol. The linkages and configurations of the carbohydrate moiety were then elucidated by MS and various NMR analyses. Thus, the major glycolipid from M. taiwanensis ATCC BAA-400 was determined with the following structure: alpha-Galp(1-6)-beta-Galp(1-6)-beta-GalNAcyl(1,2)-alpha-Glc(1,1)-Gro diester, where N-acyl is C(17:0) or hydroxy C(17:0) fatty acid and the glycerol esters were mainly iso- and anteisobranched C(15:0) and C(17:0).  相似文献   

17.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37 degrees C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   

18.
The 2-ethylhexyl esters of fatty acids were synthesized by immobilized lipase from Candida sp. 99–125. The reuse stability of immobilized lipase was at least four batches. The conditions of enzymatic synthesis of 2-ethylhexyl palmitate were optimized. In the system of petroleum ether, 10% (w/w) immobilized lipase was used in the esterfication of 2-ethyl hexanol (7.8 mmol) and palmitic acid (7.8 mmol) at 40 °C with silica gel as the water absorbent. The esterification degree was 91% under these conditions. The purity of 2-ethylhexyl palmitate was 98% after purification consisting washing by water and evaporation to remove the organic solvent.  相似文献   

19.
Today, glycerol is mainly a by-product of fat splitting and biodiesel production. This study examined the use of chemically modified silica gels for downstream separation of propane-1,3-diol and butan-1-ol from fermentation broths obtained through the glycerol fermentation process. The developed method was found to be simple and efficient for the isolation and purification of butan-1-ol from the other components in the fermentation mixture. However, in the case of the separation of propane-1,3-diol from fermentation broth, the silica gel sorbents were ineffective.  相似文献   

20.
Microcapsules of a water-in-oil-in-water (W/O/W) emulsion, which contained a hydrophilic substance, 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTSA), in its inner aqueous phase, was prepared by hot-air-drying or freeze-drying the emulsion using a single-droplet-drying method. Pullulan, maltodextrin, or gum arabic was used as a wall material, and the oily phase was tricaprylin, oleic acid, olive oil, or a mixture of tricaprylin and olive oil. An encapsulation efficiency higher than 0.95 was reached except for the microcapsules prepared using gum arabic and oleic acid. The hot-air-dried microcapsules were generally more stable than the freeze-dried microcapsules at 37°C and various relative humidities. The stability was higher for the microcapsules with tricaprylin as the oily phase than for the microcapsules with oleic acid. The higher stability of the microcapsules with tricaprylin would be ascribed to the lower partition coefficient of PTSA to the oily phase. There was a tendency for the stability to be higher at lower relative humidity for both the hot-air- and freeze-dried microcapsules. The volumetric fraction of olive oil in its mixture with tricaprylin did not significantly affect either the encapsulation efficiency or the stability of the hot-air-dried microcapsules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号