首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tufB gene encoding elongation factor Tu (EF-Tu) of Thermus thermophilus HB8 was cloned and expressed. Compared with the known tufA gene of T. thermophilus, nucleotide differences were found at 10 positions out of 1221 nucleotides, and amino acid substitutions were found at 4 positions out of 406 amino acids. The tufB product was 70.9% homologous to the corresponding sequence of the tufB product of E. coli. The G+C content of the third base of the codon in the tufB gene was 84.8% and G was especially preferred in this position.  相似文献   

3.
The tufA gene, one of two genes in Escherichia coli encoding elongation factor Tu (EF-Tu), was cloned into a ColE1-derived plasmid downstream of the lac promoter-operator. In cells carrying this plasmid, the synthesis of EF-Tu was increased four- to fivefold upon the addition of isopropyl-beta-D-thiogalactopyranoside (an inducer of the lac promoter). This condition led to the synthesis of a novel protein, called pTu, which comigrated with EF-Tu on a sodium dodecyl sulfate-polyacrylamide gel but could be separated on an isoelectric focusing gel, since pTu is slightly more basic than EF-Tu. The synthesis of pTu could also be induced by the synthesis of a hybrid protein containing just the amino-terminal half of the EF-Tu protein. Genetic data suggest that pTu is the product of the tufA and tufB genes. The pTu protein was shown to be related to EF-Tu by gel electrophoresis of tryptic peptides. Pulse-chase experiments suggest that pTu is a precursor of EF-Tu. Interestingly, in a classic membrane fractionation procedure, EF-Tu was found in the cytosolic fraction, whereas pTu was partitioned with the outer membrane.  相似文献   

4.
Two structural genes for the Thermus thermophilus elongation factor Tu (tuf) were identified by cross-hybridization with the tufA gene from E. coli. The sequence of one of these tuf genes, localized on a 6.6 kb Bam HI fragment, was determined and confirmed by partial protein sequencing of an authentic elongation factor Tu from T. thermophilus HB8. Expression of this tuf gene in E. coli minicells provided a low amount of immuno-precipitable thermophilic EF-Tu. Affinity labeling of the T. thermophilus EF-Tu and sequence comparison with homologous proteins from other organisms were used to identify the guanosine-nucleotide binding domain.  相似文献   

5.
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.  相似文献   

6.
Translational frameshifts, both +1 and -1, are promoted by mutations in tufA and tufB, the two genes encoding the polypeptide chain elongation factor (EF) Tu of Escherichia coli. Strains harboring the mutant EF-Tu(Ala375----Thr) encoded by either tufA or tufB or by both, display a linear relationship between the frequency of frameshifting and the concentration of mutant EF-Tu, relative to the total amount of EF-Tu. A second mutant species, EF-TuB(Gly222----Asp), also promotes frameshifting. The frequency is strikingly enhanced by the combined action of EF-TuA(Ala375----Thr) and EF-TuB(Gly222----Asp) and exceeds by far the total contribution of the two mutant EF-Tus studied separately. These observations raise the question whether the formation of each peptide bond under conditions that no frameshifting occurs also requires the combined action of two EF-Tu molecules, in this case not differing functionally.  相似文献   

7.
An Escherichia coli strain was constructed in which both chromosomal genes encoding elongation factor (EF)-Tu (tufA and tufB) have been inactivated with precise coding sequence replacements. A tufA gene in an expression vector is supplied as the sole EF-Tu source. By using plasmid replacement, based on plasmid incompatibility, mutant EF-Tu variants with a large C'-terminal extension up to 270 amino acids were studied and proved to be functional in a strain lacking the chromosomal tufA and tufB genes.  相似文献   

8.
U Johanson  D Hughes 《Gene》1992,120(1):93-98
The nucleotide (nt) sequences of the str operon in Escherichia coli K-12 and Salmonella typhimurium LT2 were completed and compared at the nt and amino acid (aa) level. The order of conservation at the nt and aa level is rpsL greater than tufA greater than rpsG greater than f usA. A striking difference is that the rpsG-encoded ribosomal protein, S7, in E. coli K-12 is 23 aa longer than in S. typhimurium. The very low (0.18) codon adaptation index of this part of the E. coli K-12-encoding gene and the unusual stop codon (UGA) suggest that this is a relatively recent extension. A trend towards a higher G+C content in fusA (gene encoding elongation factor (EF)-G) and tufA (gene encoding EF-Tu) in S. typhimurium is noted. In fusA, nt substitutions at all three positions in a codon occur at a much higher frequency than expected from the number of nt substitutions in the gene, assuming they are random and independent events. An analysis of substitutions in this and other genes suggests that the triple substitutions in fusA, and some other genes, are the result of the sequential accumulation of individual mutations, probably driven by selection pressure for particular codons or aa.  相似文献   

9.
An exceptional disposition of the elongation factor genes is observed in Rickettsia prowazekii, in which there is only one tuf gene, which is distant from the lone fus gene. In contrast, the closely related bacterium Agrobacterium tumefaciens has the normal bacterial arrangement of two tuf genes, of which one is tightly linked to the fus gene. Analysis of the flanking sequences of the single tuf gene in R. prowazekii shows that it is preceded by two of the four tRNA genes located in the 5' region of the Escherichia coli tufB gene and that it is followed by rpsJ as well as associated ribosomal protein genes, which in E. coli are located downstream of the tufA gene. The fus gene is located within the str operon and is followed by one tRNA gene as well as by the genes secE and nusG, which are located in the 3' region of tufB in E. coli. This atypical disposition of genes suggests that intrachromosomal recombination between duplicated tuf genes has contributed to the evolution of the unique genomic architecture of R. prowazekii.  相似文献   

10.
E Vijgenboom  L Bosch 《Biochimie》1987,69(10):1021-1030
The elongation factor EF-Tu of E. coli is a multifunctional protein that lends itself extremely well to studies concerning structure-function relationships. It is encoded by two genes: tufA and tufB. Mutant species of EF-Tu have been obtained by various genetic manipulations, including site- and segment-directed mutagenesis of tuf genes on a vector. The presence of multiple tuf genes in the cell, both chromosomal and plasmid-borne, hampers the characterization of the mutant EF-Tu. We describe a procedure for transferring plasmid-borne tuf gene mutations to the chromosome. Any mutation engineered by genetic manipulation of tuf genes on a vector can be transferred both to the tufA and the tufB position on the chromosome. The procedure facilitated the functional characterization of some of our recently obtained tuf mutations. Of particular relevance is, that it enabled us for the first time to obtain a mutant tufB on the chromosome, encoding an EF-TuB resistant to kirromycin. It thus became possible to study the consequences for growth of tufA inactivation by insertion of bacteriophage Mu. The preliminary evidence obtained suggests that an EF-TuA, active in polypeptide synthesis, is essential for growth whereas such an EF-TuB is dispensable.  相似文献   

11.
The tufB gene, encoding elongation factor Tu (EF-Tu), from the myxobacterium Stigmatella aurantiaca was cloned and sequenced. It is preceded by four tRNA genes, the first ever described in myxobacteria. The tRNA synthesized from these genes and the general organization of the locus seem identical to that of Escherichia coli, but differences of potential importance were found in the tRNA sequences and in the intergenic regions. The primary structure of EF-Tu was deduced from the tufB DNA sequence. The factor is composed of 396 amino acids, with a predicted molecular mass of 43.4 kDa, which was confirmed by expression of tufB in maxicells. Sequence comparisons between S.aurantiaca EF-Tu and other bacterial homologues from E.coli, Salmonella typhimurium and Thermus thermophilus displayed extensive homologies (75.9%). Among the variable positions, two Cys residues probably involved in the temperature sensitivity of E.coli and S.typhimurium EF-Tu are replaced in T.thermophilus and S.aurantiaca EF-Tu. Since two or even three tuf genes have been described in other bacterial species, the presence of multiple tuf genes was sought for. Southern and Northern analysis are consistent with two tuf genes in the genome of S.aurantiaca. Primer extension experiments indicate that the four tRNA genes and tufB are organized in a single operon.  相似文献   

12.
The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes.  相似文献   

13.
We have determined the nucleotide sequence of the Escherichia coli fus gene, which codes for elongation factor G. The protein product of the sequenced gene contains 703 amino acids, with a predicted molecular weight of 77,444. The fus gene shows the nonrandom pattern of codon usage typical of ribosomal proteins and other proteins synthesized at a high level. We have identified several potential promoter sequences within the gene. One of these sequences may correspond to the secondary promoter for expression of the downstream tufA gene (encoding elongation factor Tu) whose activity has been described previously (1,2). A comparison of the nucleotide and amino acid sequences of elongation factors G and Tu reveals a limited but significant homology between the two proteins within the 150 amino acid residues at their amino-terminal ends.  相似文献   

14.
S Tapio  L A Isaksson 《Biochimie》1988,70(2):273-281
Kirromycin-resistant mutant forms of elongation factor Tu, which are coded by tufA (Ar) or tufB (Bo) and are associated with an increased rate of translational error formation, have been analysed. In vivo, Ar was found to increase misreading as well as suppression of non-sense codons irrespective of Bo in a strain with wild type ribosomes. It is therefore not necessary to evoke both tufA (Ar) and tufB (Bo) mutations together in order to increase translational error as suggested earlier [1]. When combined with a hyperaccurate ribosomal rpsL (S12) mutation, Ar counteracts the restrictive effects on translational error formation caused by the altered protein S12, thus restoring the levels of missense error in vitro and non-sense error and suppression in vivo to near wild type values. As judged from in vitro experiments this results principally from a lowered selectivity of the Ar ternary complex at the initial discrimination step on the ribosome during translation. In vivo, this compensatory effect on the rpsL mutation on non-sense error formation and suppression is seen irrespective of the nature of tRNA or codon context. Furthermore, the tufA mutation enhances the cellular growth rate of the rpsL mutant, whereas it decreases growth of strains with normal ribosomes. Inactivation of one of the two genes coding for EF-Tu (tufB), while leaving the other gene (tufA) intact, can by itself, increase non-sense error formation and suppression.  相似文献   

15.
16.
A deletion mutant of a plasmid born Escherichia coli tufA gene, which codes for a truncated elongation factor Tu comprising domains 2 and 3, has been constructed by genetic engineering. This gene was overexpressed in E. coli, and a polypeptide representing the truncated elongation factor Tu was isolated, purified to near homogeneity, crystallized and characterized physico-chemically as well as biochemically. Circular dichroism spectroscopy and limited tryptic digestion demonstrate that the isolated domain pair 2 and 3 behaves like an independent folding unit which adopts a similar secondary and most likely, tertiary, structure to that present in the intact elongation factor Tu. However, the isolated domain pair 2 and 3 does not interact with aminoacyl-tRNA or the antibiotic kirromycin, two ligands which were shown previously by cross-linking experiments to be in contact with amino acid residues located in domains 1 and 2, and domain 3, respectively. The results suggest that the isolated domain pair 2 and 3 by itself forms too few contacts with these ligands to form a stable complex. Furthermore, the data suggest that domain 1 in intact EF-Tu, in a subtle but nevertheless decisive manner, alters the conformation of the other two domains in such a way that all three domains cooperatively create a high affinity binding site for aminoacyl-tRNA and the antibiotic kirromycin.  相似文献   

17.
18.
The purified RecA proteins encoded by the cloned genes from Proteus vulgaris, Erwinia carotovora, Shigella flexneri, and Escherichia coli B/r were compared with the RecA protein from E. coli K-12. Each of the proteins hydrolyzed ATP in the presence of single-stranded DNA, and each was covalently modified with the photoaffinity ATP analog 8-azidoadenosine 5'-triphosphate (8N3ATP). Two-dimensional tryptic maps of the four heterologous RecA proteins demonstrated considerable structural conservation among these bacterial genera. Moreover, when the [alpha-32P]8N3ATP-modified proteins were digested with trypsin and analyzed by high-performance liquid chromatography, a single peak of radioactivity was detected in each of the digests and these peptides eluted identically with the tryptic peptide T31 of the E. coli K-12 RecA protein, which was the unique site of 8N3ATP photolabeling. Each of the heterologous recA genes hybridized to oligonucleotide probes derived from the ATP-binding domain sequence of the E. coli K-12 gene. These last results demonstrate that the ATP-binding domain of the RecA protein has been strongly conserved for greater than 10(7) years.  相似文献   

19.
20.
Mutant forms of elongation factor Tu encoded by tufA8 and tufB103 in Salmonella typhimurium cause suppression of some but not all frameshift mutations. All of the suppressed mutations in S. typhimurium have frameshift windows ending in the termination codon UGA. Because both tufA8 and tufB103 are moderately efficient UGA suppressors, we asked whether the efficiency of frameshifting is influenced by the level of misreading at UGA. We introduced plasmids synthesizing either one of the release factors into strains in which the tuf mutations suppress a test frameshift mutation. We found that overproduction of release factor 2 (which catalyzes release at UGA and UAA) reduced frameshifting promoted by the tuf mutations at all sites tested. However, at one of these sites, trpE91, overproduction of release factor 1 also reduced suppression. The spontaneous level of frameshift "leakiness" at three sites in trpE, each terminating in UGA, was reduced in strains carrying the release factor 2 plasmid. We conclude that both spontaneous and suppressor-enhanced reading-frame shifts are influenced by the activity of peptide chain release factors. However, the data suggest that the effect of release factor on frameshifting does not necessarily depend on the presence of the normal triplet termination signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号