首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was found that o-benzoquinones (oBQ) inhibit the CCl4-dependent lipid peroxidation (LPO) in rat liver microsomes in vitro. The experimental data suggest that the antioxidant effect of oBQ is not due to the ability of these substances to shunt the NADPH-dependent electron transport pathways. More likely, oBQ inhibit LPO due to the ability of their reduced forms to scavenge the free radicals which induce LPO. Based on the experimental data, it was concluded that the increasing absorption of liver lipids at 230-236 nm after administration of CCl4 is due to the accumulation of reduced hydroperoxides. This process was shown to be inhibited by oBQ.  相似文献   

2.
The antioxidative properties of drugs--diethylcarbamazine citrate--DECC, dipyridamole-DP, levamisole and labinzarit--have been investigated in various microsomal lipid peroxidation (LPO) models: NADPH-, ascorbate- and CCl4-dependent. The most strong antioxidant of direct action turned out to be DP, DECC exhibited the antioxidative properties as a result of metabolic activity in monooxygenases system of rat liver microsomes. Levamisole and labinzarit turned out to be weak antioxidants. The control of microsomal membrane stability against Fe(2+)-ADP, NADPH-induced LPO, after being isolated from rat liver after the action of CCl4 without and with DECC, showed that DECC protected microsomal membranes from CCl4 in vivo and they remained stable against LPO in vitro.  相似文献   

3.
Carbon tetrachloride (CCl4) is a known environmental biohazard, which induces lipid peroxidation (LPO) and oxidative damage in rat liver. In this study, the hepatoprotective effect of Gossypitrin, a flavonoid extracted from Hibiscus elatus S.W, was investigated against the CCl4-induced in vivo hepatotoxicity. The levels of malondialdehyde (MDA) were assayed as an index of LPO and the levels of catalase (CAT) activity as a biomarker of oxidative damage. Leakage of aspartate aminotransferase (ALT) and lactate dehydrogenase (LDH), liver weight/body weight ratio as well as morphological parameters were used as signs of hepatotoxicity. CCl4 (1 ml/kg), intraperitoneally injected into rats, caused increased MDA production and CAT activity, and also a significant ALT and LDH leakage as compared to levels of these constituents in the control group. Changes in morphology, including steatosis, cells forming balloon cells and necrosis were evaluated in the hepatotoxin-induced damage. Treatment of rats with Gossypitrin (3.98, 5.97 and 8.95 mg/kg) 2 h before and 2 h after CCl4 injection, protected hepatocytes against cell injury induced by CCl4 and its efficacy as an antioxidant was similar to vitamin E (used as a reference antioxidant). These results are consistent with the conclusion that the toxicity of CCl4 is due to LPO and the generation of reactive oxygen species (ROS), and that Gossypitrin's protective effects relate to its direct radical scavenging ability and other antioxidative processes induced by its structure.  相似文献   

4.
4-[N-sodium-N-(5-ethyl-1,3,4-thiadiazol-2-yl)]- sulphanylamido-5-methoxy-1,2-benzoquinone selectively inhibiting lipid peroxidation (LPO) was used to study the hepatotoxic effect of carbon tetrachloride in vivo. It was found that inactivation of the liver microsomal oxidation system during the first few hours after CCl4 injection is due to covalent binding rather than LPO.  相似文献   

5.
The antioxidative effect of rutin (vitamin P) on Fe2+-induced lipid peroxidation (LPO) in bovine heart microsomes and lecithin liposomes was studied. It was shown that the LPO-induced inhibition of microsomes and liposomes in the presence of rutin occurs via two mechanisms, i.e., association of Fe2+ ions to form an inactive complex and a direct interaction between rutin and free radicals. The contribution of these mechanisms depends on the composition of the reaction mixture. In bovine heart microsomes and liposomes, ascorbic acid has a dual activity towards LPO. At high concentrations of Fe2+ necessary for LPO induction (approximately 1 x 10(-3) M), ascorbic acid blocks LPO, whereas at low Fe2+ concentrations (less than 1 x 10(-4) M) it has a prooxidative effect. A combined use of ascorbic acid and rutin results in an additive antioxidative effect at high Fe2+ concentrations (approximately 1.10(-3) M). However, at low Fe2+ concentrations rutin acts as an antagonist of the prooxidative effect of ascorbic acid.  相似文献   

6.
Hypochlorous acid (HOCl), the main product of the myeloperoxidase system, is a strong oxidant and a potent chlorinating agent, which can damage host tissues. In the present work, the scavenger effect of three aglycone flavonols (myricetin, quercetin and kaempferol) and of the natural glycoside flavonol, rutin, was studied towards HOCl using luminol-dependent chemiluminescence (CL). At 1 micro mol/L fi nal concentration, rutin was the most powerful scavenger of HOCl with an inhibitory luminol oxidation of 91.4% +/- 3.2%. Quercetin, kaempferol and myricetin inhibited the luminol-dependent CL at the same concentration only by 75.9% +/- 3.4%, 57.7% +/- 5.3% and 43.3% +/- 3.5%, respectively. With increasing concentration of these flavonols, a dose-dependent inhibition of luminol CL was observed. In order to prove to what extent flavonols scavenge HOCl, their concentrations that gave 50% inhibition of luminescence (IC50) were compared to IC50 values of the sulphur-containing compounds N-acetyl cysteine (NAC) and taurine. The scavenging activities of compounds tested decrease in the order: rutin > NAC > quercetin > kaempferol > taurine. The present study revealed that rutin was the most effective scavenger agent.  相似文献   

7.
Antioxidants in the blood plasma of rats were measured as part of a comprehensive, multilaboratory validation study searching for noninvasive biomarkers of oxidative stress. For this initial study an animal model of CCl(4) poisoning was studied. The time (2, 7, and 16 h) and dose (120 and 1200 mg/kg, intraperitoneally)-dependent effects of CCl(4) on plasma levels of alpha-tocopherol, coenzyme Q (CoQ), ascorbic acid, glutathione (GSH and GSSG), uric acid, and total antioxidant capacity were investigated to determine whether the oxidative effects of CCl(4) would result in losses of antioxidants from plasma. Concentrations of alpha-tocopherol and CoQ were decreased in CCl(4)-treated rats. Because of concomitant decreases in cholesterol and triglycerides, it was impossible to dissociate oxidation of alpha-tocopherol and the loss of CoQ from generalized lipid changes, due to liver damage. Ascorbic acid levels were higher with treatment at the earliest time point; the ratio of GSH to GSSG generally declined, and uric acid remained unchanged. Total antioxidant capacity showed no significant change except for 16 h after the high dose, when it was increased. These results suggest that plasma changes caused by liver malfunction and rupture of liver cells together with a decrease in plasma lipids do not permit an unambiguous interpretation of the results and impede detection of any potential changes in the antioxidant status of the plasma.  相似文献   

8.
We evaluated the effect of "weak" CYP2E1 binders (ethanol, acetone and glycerol) "tight" CYP2E1 binders (4-methylpyrazole, imidazole, isoniazid and pyridine) and CCl4 (suicide substrate of CYP2E1) on the NADPH-dependent production of microsomal reactive oxygen species (ROS), lipid peroxidation (LPO), and subsequent modification of microsomal and CYP2E1 proteins. The oxidation of 2',7'-dichlorofluorescin diacetate (DCFHDA) was used as an index of formation of microsomal ROS and LPO-derived reactive species. Microsomal LPO was determined by malondialdehyde (MDA) HPLC measurement. Addition of NADPH to rat liver microsomes initiated DCFHDA oxidation and MDA formation, leading to further selective modification of microsomal proteins and proteases-independent degradation of CYP2E1 protein. Iron chelators prevented these processes whereas hydroxyl radical scavengers showed weak effects, suggesting an important role of LPO. Among the tested CYP2E1 binders, only isoniazid strongly inhibited NADPH-dependent DCFHDA oxidation, LPO and modification of microsomal proteins. Other CYP2E1 binders showed weak inhibitory effects of these processes. Concerning NADPH-dependent modification of CYP2E1 protein, all of the tested CYP2E1 binders, except glycerol, prevented this process with a different potency (isoniazid > 4-methylpyrazole = imidazole = pyridine 3 > acetone > ethanol). "Tight" binders were more effective than "weak" binders. The CCl4 stimulated the DCFHDA oxidation, LPO and CYP2E1 protein modification. Among the tested CYP2E1 binders, only isoniazid effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. In microsomes isolated from CYP2E1 transfected HepG2 cells, isoniazid inhibited the CYP2E1-dependent DCFHDA oxidation whereas other CYP2E1 binders did not inhibit this reaction although these compounds strongly inhibited CYP2E1 activity. The present study demonstrates that CYP2E1 binders and isoniazid differentially inhibit LPO-catalyzed oxidative modification of CYP2E1 protein in NADPH-dependent microsomal reactions. It seems that CYP2E1 binders protect CYP2E1 from the oxidative modification mainly by binding to the active site of the enzyme, rather than by blocking the reactive species production. The strong protective effect of isoniazid can be attributed to its ability to scavenge free radicals. These effects of CYP2E1 binders are considered to contribute to the regulation of hepatic CYP2E1 protein levels via stabilization of the protein.  相似文献   

9.
The antioxidant properties and inhibitory effect on early tumor promoter markers of A. marmelos (25 and 50 mg/Kg b. wt. orally) have been evaluated. Male Wistar rats were pre-treated for seven consecutive days with A. marmelos prior to CCl4 (1 mL Kg(- 1) body weight p. o., in corn oil [1:1 v/v]) treatment. Pre-treatment with A. marmelos suppressed lipid peroxidation (LPO), xanthine oxidase (XO) and release of serum toxicity marker enzymes viz, SGOT, LDH, SGPT dose-dependently and significantly (p < 0.001). Hepatic antioxidant status viz, reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), quinone reductase (QR), catalase (CAT) were concomitantly restored in A. marmelos-treated groups (p < 0.001). In addition, A. marmelos pretreatment also prevented the CCl4-enhanced ornithine decarboxylase (ODC) and hepatic DNA synthesis significantly (p < 0.001). In conclusion, carbon tetrachloride-induced liver toxicity was strikingly attenuated by A. marmelos treatment and the study gives some insight into the mechanisms involved in diminution of free radical generating toxicants and enhancement of the antioxidant armory, hence preventing further tissue damage, injury and hyperproliferation. Thus, these findings indicate that A. marmelos attenuates CCl4-mediated hepatic oxidative stress, toxicity, tumor promotion and subsequent cell proliferation response in Wistar rats.  相似文献   

10.
11.
Antioxidant and antifibrotic properties of colchicine were investigated in the carbon tetrachloride (CCl(4)) rat model. (1) The protective effect of colchicine pretreatment on CCl(4) induced oxidant stress was examined in rats subsequently receiving a single lethal dose of CCl(4). Urinary 8-isoprostane, kidney and liver malondialdehyde and kidney glutathione levels increased following CCl(4) treatment, but only the rise in kidney malondialdehyde was significantly inhibited by colchicine pretreatment. Serum total antioxidant levels were significantly higher in the colchicine pretreatment group. (2) The long term effects of colchicine treatment on CCl(4) induced liver damage were investigated using liver histology and biochemical markers (hydroxyproline and type III procollagen peptide). Co-administration of colchicine with sub-lethal doses of CCl(4) over 10 weeks did not prevent progression to cirrhosis. However, rats made cirrhotic with repeated CCl(4) challenge and subsequently treated with colchicine for 12 months, all showed histological regression of cirrhosis. (3) The antioxidant effect of colchicine in vitro was evident only at very high concentrations compared to other plasma antioxidants. In summary, colchicine has only weak antioxidant properties, but does afford some protection against oxidative stress; more importantly, long term treatment with this drug may be of value in producing regression of established cirrhosis.  相似文献   

12.
We evaluated the effect of "weak" CYP2E1 binders (ethanol, acetone and glycerol) "tight" CYP2E1 binders (4-methylpyrazole, imidazole, isoniazid and pyridine) and CCl 4 (suicide substrate of CYP2E1) on the NADPH-dependent production of microsomal reactive oxygen species (ROS), lipid peroxidation (LPO), and subsequent modification of microsomal and CYP2E1 proteins. The oxidation of 2',7'-dichlorofluorescin diacetate (DCFHDA) was used as an index of formation of microsomal ROS and LPO-derived reactive species. Microsomal LPO was determined by malondialdehyde (MDA) HPLC measurement. Addition of NADPH to rat liver microsomes initiated DCFHDA oxidation and MDA formation, leading to further selective modification of microsomal proteins and proteases-independent degradation of CYP2E1 protein. Iron chelators prevented these processes whereas hydroxyl radical scavengers showed weak effects, suggesting an important role of LPO. Among the tested CYP2E1 binders, only isoniazid strongly inhibited NADPH-dependent DCFHDA oxidation, LPO and modification of microsomal proteins. Other CYP2E1 binders showed weak inhibitory effects of these processes. Concerning NADPH-dependent modification of CYP2E1 protein, all of the tested CYP2E1 binders, except glycerol, prevented this process with a different potency (isoniazid > 4-methylpyrazole=imidazole=pyridine &#100 acetone > ethanol). "Tight" binders were more effective than "weak" binders. The CCl 4 stimulated the DCFHDA oxidation, LPO and CYP2E1 protein modification. Among the tested CYP2E1 binders, only isoniazid effectively scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radicals. In microsomes isolated from CYP2E1 transfected HepG2 cells, isoniazid inhibited the CYP2E1-dependent DCFHDA oxidation whereas other CYP2E1 binders did not inhibit this reaction although these compounds strongly inhibited CYP2E1 activity. The present study demonstrates that CYP2E1 binders and isoniazid differentially inhibit LPO-catalyzed oxidative modification of CYP2E1 protein in NADPH-dependent microsomal reactions. It seems that CYP2E1 binders protect CYP2E1 from the oxidative modification mainly by binding to the active site of the enzyme, rather than by blocking the reactive species production. The strong protective effect of isoniazid can be attributed to its ability to scavenge free radicals. These effects of CYP2E1 binders are considered to contribute to the regulation of hepatic CYP2E1 protein levels via stabilization of the protein.  相似文献   

13.
Treatment of non-induced or phenobarbital-induced, glutathione-depleted mice with 400 mg/kg paracetamol led to a marked ethane exhalation as an index of in vivo lipid peroxidation (LPO) and to a significant elevation of liver-specific serum enzyme activities. Similar effects were seen with rats treated with 0.5 ml/kg CCl4. Pretreatment with the iron-chelating agent desferrioxamine (DFO) clearly suppressed lipid peroxidation in all cases, but inhibited only the CCl4-induced hepatotoxicity. Treatment of mice with desferrioxamine alone showed no hepatotoxicity at all, nor did it influence liver GSH-levels. In addition, DFO had no effect on hepatic microsomal enzyme activities responsible for the bioactivation of both paracetamol and CCl4. These findings are consistent with the theories which indicate that lipid peroxidation requires the presence of Fe2+-ions, regardless of the initiating agent, and that LPO is involved in CCl4-toxicity, but most probably not in paracetamol-induced liver damage. Furthermore, Fe2+-ions might play a role as mediators of CCl4-hepatotoxicity.  相似文献   

14.
The antioxidants in foods play an important role in preventing the generation of reactive oxygen species (ROS). Some of the dietary constituents, commonly used in Indian foods such as cloves (Syzygium aromaticum), licorice (Glycyrrhiza glabra), mace (aril of Myristica fragrans) and greater cardamom (Amomum subulatum), were selected as the test samples to find their effect on the inhibition of lipid peroxidation (LPO) in rat liver homogenate. Three different oxidant systems were used to induce LPO. The results show that all the spices have antioxidant activities at various concentrations. None of the spices showed prooxidant properties. The effect of spices on the inhibition of LPO was concentration dependent. Cloves, mace and cardamom inhibited the initiation as well as propagation phases of FeCl_{3} induced LPO, while licorice inhibited the initiation phase only. The reducing power and the superoxide scavenging activity of spices was also measured in vitro. The reducing power of various spices increased with concentration. The percentage inhibition of superoxide radical generation by the spices was also observed to be concentration dependent. The results show that spices used in the present study have significant ability to inhibit LPO due to their polyphenol content, strong reducing power and superoxide radical scavenging activity. Cloves showed the highest antioxidant activity probably due to the higher polyphenol content as compared to other spices.  相似文献   

15.
Tomatoes are an excellent source of the carotenoid lycopene, a compound that is thought to be protective against prostate cancer. They also contain small amounts of flavonoids in their peel ( approximately 5-10 mg/kg fresh weight), mainly naringenin chalcone and the flavonol rutin, a quercetin glycoside. Flavonols are very potent antioxidants, and an increasing body of epidemiological data suggests that high flavonoid intake is correlated with a decreased risk for cardiovascular disease. We have upregulated flavonol biosynthesis in the tomato in order to generate fruit with increased antioxidant capacity and a wider range of potential health benefit properties. This involved transformation of tomato with the Petunia chi-a gene encoding chalcone isomerase. Resulting transgenic tomato lines produced an increase of up to 78 fold in fruit peel flavonols, mainly due to an accumulation of rutin. No gross phenotypical differences were observed between high-flavonol transgenic and control lines. The phenotype segregated with the transgene and demonstrated a stable inheritance pattern over four subsequent generations tested thus far. Whole-fruit flavonol levels in the best of these lines are similar to those found in onions, a crop with naturally high levels of flavonol compounds. Processing of high-flavonol tomatoes demonstrated that 65% of flavonols present in the fresh fruit were retained in the processed paste, supporting their potential as raw materials for tomato-based functional food products.  相似文献   

16.
采用大鼠离体肝细胞原代培养24h,并利用四氯化碳CCl4造成急性肝细胞损伤模型,检定15-甲基-前列腺素F2α(15-Mt-PGF2α)对肝细胞损伤的影响。结果表明:(1)15-Mt-PGF2α可显著降低中毒肝细胞脂质过氧化物水平,抑制肝细胞脂质过氧化,并降低谷丙转氨酶(GPT)和谷草转氨酶(GOT)水平,稳定脂质膜。(2)显著促进中毒肝细胞RNA和DNA的合成。(3)超微结构证实15-Mt-PGF2α能减轻CCl4对肝细胞脂质膜,染色质,线粒体,内质网和核蛋白体的损害。  相似文献   

17.
The ethyl ether extract of A. vulgaris inhibited in vitro microsomal lipid peroxidation (IC50 58.8 microg/ml) and showed moderate ability to scavenge superoxide radicals and to chelate iron ions. The extract (100 mg/kg body weight, po) decreased uninduced and enzymatic microsomal lipid peroxidation in the liver of male rats pretreated with CCl4 (1 ml/kg body weight) by 27 and 40%, respectively. Activity of antioxidant and related enzymes (catalase and glucose-6-phosphate dehydrogenase) inhibited by CCl4 was significantly restored after administration of the extract. The extract itself significantly enhanced superoxide dismutase activity. There was no effect of the extract on hepatic glutathione level and cytochrome P450 content, both were decreased by CCl4. Neither CCl4 nor the tested extract affected activities of NADPH-cytochrome P450 reductase and two monooxygenases, aniline hydroxylase and aminopyrine n-demethylase. It can be concluded that the protective effect of the A. vulgaris extract in CCl4-induced liver injury is mediated by inhibition of microsomal lipid peroxidation and restoring activity of some antioxidant and related enzymes.  相似文献   

18.
We previously reported that the mold Monascus anka, traditionally used for fermentation of food, showed antioxidant and hepatoprotective actions against chemically induced liver injuries. In the present study, the antioxidant component of M. anka was isolated and identified. The antioxidant was elucidated to be dimerumic acid. DPPH (1,1-diphenyl-2-picrylhydrazyl) radical was significantly scavenged by the antioxidant whereas hydroxyl radical and superoxide anion were moderately scavenged. When the antioxidant (12 mg/kg) was given to mice prior to carbon tetrachloride (CCl(4), 20 microl/kg, ip) treatment, the CCl(4)-induced liver toxicity in mice seen in an elevation of serum aspartate aminotransferase and alanine aminotransferase activities was depressed, suggesting the hepatoprotective action of the antioxidant. The liver microsomal glutathione S-transferase activity, which is known to be activated by oxidative stress or active metabolites, was increased by CCl(4) treatment and the increase was also depressed by pretreatment with the mold antioxidant. Thus these data confirmed that the dimerumic acid isolated from M. anka is the potential antioxidant and protective against CCl(4)-induced liver injury.  相似文献   

19.
The influence of aromatic phenolic and non-phenolic acids on manganese peroxidase (MnP)-dependent peroxidation of linoleic acid, and oxidation of a non-phenolic lignin model compound (LMC) was studied. Phenolic compounds inhibited both the MnP-dependent lipid peroxidation (LPO) and non-phenolic LMC degradation in the system. The antioxidant activity of the aromatic compounds in the enzymatic system with MnP-dependent LPO depends on the presence of the phenolic hydroxyl groups attached to the aromatic ring structure, the methoxylation of the hydroxyl group in the ortho position in diphenolics, and number of carbon atoms in the side chain. Natural phenolic compounds inhibit the oxidation of non-phenolic lignin in the system based on MnP-mediated LPO, but do not prevent it. This result indicates that MnP-mediated LPO may play an important role in lignin degradation even in the presence of the phenolic antioxidant compounds, and supports the possibility of the involvement of LPO in the degradation of lignin in wood.  相似文献   

20.
Photosensitized hemolysis of human erythrocytes by hematoporphyrin was suppressed by flavonols such as quercetin and rutin at submillimolar concentrations. The suppression of photohemolysis was accompanied by inhibition of lipid peroxidation by the reagents. Quercetin and rutin were photooxidized in the presence of hematoporphyrin and the photooxidation was partially suppressed by 1 mM NaN3, a quencher of singlet molecular oxygen. Flavonols were also oxidized by radicals formed during degradation of lauroyl peroxide. These results indicate that flavonols can function as antioxidants in biological systems by terminating radical chain reactions and removing singlet molecular oxygen. A pharmacological function of flavonols, decrease of the increased permeability and fragility of capillary, was discussed in relation to their antioxidative functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号