首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aspects of resistance to sweet potato virus disease in sweet potato   总被引:3,自引:0,他引:3  
In field trials during the first and the second rainy season of 1996 in Uganda, whiteflies were similarly abundant and aphids were absent on three clones of sweet potato (NIS-93–63, cv. Tanzania and cv. New Kawogo) although the three clones differed considerably in their resistance to sweet potato virus disease (SPVD), a complex disease resulting from infection by both the aphid-borne sweet potato feathery mottle virus (SPFMV) and the whitefly-borne sweet potato chlorotic stunt virus (SPCSV). This suggests that vector resistance does not determine the relative SPVD resistance of these genotypes. SPFMV alone had only a low virus titre in sweet potato cvs Tanzania and New Kawogo, became increasingly difficult to detect in plants of these cultivars and was seldom acquired by aphids. However, this resistance to SPFMV was not apparent in plants which were also infected with SPCSV. Plants then had a high SPFMV titre, appeared unable to eliminate SPFMV and provided good sources for aphids to acquire it.  相似文献   

2.
Three hundred and ninety‐four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co‐infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co‐infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3‐expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.  相似文献   

3.
Heat tolerance of groundnut (Arachis hypogaea L.) genotypes was evaluated by solute leakage and chlorophyll fluorescence techniques in heat-hardened and non-hardened plants. To determine the appropriate hardening treatment, 1-month-old plants of two groundnut genotypes, ICGV 86707 and Chico were conditioned at five combinations of hardening (37°C) and non-hardening (30°C) air temperatures over a 5-day period. Heat injury, was assessed through measurements of electrolyte leakage after stressing leaf discs to 55°C for 15 min. The relative injury was significantly influenced by the conditioning temperatures and by the temperature during 24 h prior to measurement if those involved non-hardening conditions. Relative injury and chlorophyll fluorescence were measured after stressing leaves of six genotypes at a range of temperatures between 49°C and 55°C. Significant genotype × hardening treatment interactions were observed in relative injury and chlorophyll fluorescence. Chico was susceptible to heat stress, the relative injury test identified ICGV 86707 as tolerant, and the chlorophyll fluorescence test identified ICGV 86707 as tolerant under hardened conditions and ICGV 87358 as tolerant when non-hardened. When expressed as percentage of control values, the relative injury and chlorophyll fluorescence measurements over the 49–53°C stress temperature range were strongly correlated. Chlorophyll concentrations were increased by hardening in all genotypes except Chico. In Chico, chlb concentration was decreased and the chla/b ratio increased by hardening, and chlorophyll concentrations were correlated with chlorophyll fluorescence parameters. Chlorophyll concentration may therefore provide an alternative means of screening for heat tolerance.  相似文献   

4.
Sweet potato virus disease (SPVD) was common (25–30% average incidences), and farmers recognised it as an important disease, in sweet potato crops in southern Mpigi, Masaka and Rakai Districts in Uganda, but SPVD was rare in Soroti and Tororo Districts. Whiteflies, which are the vector of sweet potato chlorotic stunt crinivirus (SPCSV) a component cause of SPVD, were correspondingly common on sweet potato crops in Mpigi and rare on crops in Tororo. However, aphids, which are the vectors of sweet potato feathery mottle potyvirus (SPFMV), the other component cause of SPVD, were not found colonising sweet potato crops, and itinerant alate aphids may be the means of transmission. Different sweet potato cultivars were predominant in the different districts surveyed and four local cultivars obtained from Kanoni in S. Mpigi, where whiteflies and SPVD were common, were more resistant to SPVD than four cultivars from Busia in Tororo District, where whiteflies and SPVD were rare. However, nationally released cultivars were even more resistant than the local cultivars from Kanoni. Yield results and interviews with farmers indicated that farmers in S. Mpigi were making compromises in their choice of cultivars to grow, some key factors being SPVD susceptibility, and the yield, taste, and marketability, duration of harvest and in-ground storability of the storage roots. These compromises need to be included in an assessment of yield losses attributable to SPVD.  相似文献   

5.
6.
Reactions to two subgroup I isolates (Fny-CMV and Pf-CMV) and two subgroup II isolates (A9-CMV and LS-CMV) of cucumber mosaic virus (CMV) were studied in three non tuber-bearing wild potato species (Solanum spp.) of the series Etuberosa, and in two tuber-bearing interspecific potato hybrids and four potato cultivars using graft-inoculation. Three classes of phenotypic reactions (susceptible, hypersensitive, extreme resistance) were observed in the tuber-bearing genotypes. Susceptible genotypes developed mosaic or severe mosaic with leaf malformation and had high CMV titres. Hypersensitive genotypes developed either top necrosis or vein necrosis and/or necrotic spots on apical leaves, and had low CMV titres. Extremely resistant genotypes had no symptoms and no CMV was detected. The hybrid 87HW13.7 (S. tuberosum×S. multidissectum) developed top necrosis specific to infection with Fny-CMV. The hybrid ‘A6’ (S. demissum×S. tuberosum cv. Aquila) was hypersensitive to all CMV isolates tested. Extreme resistance was not functional against all CMV isolates. Neither hypersensitivity nor extreme resistance were related to the CMV subgroup.  相似文献   

7.
Ten trypsin (EC 3.4.21.4) inhibitors have been isolated and purified by gel filtration and ion-exchange chromatography from the tubers of sweet potato (Ipomoea batatas). The molecular weights of the three most active inhibitors were estimated by molecular sieve chromatography and found to be 12 000, 10 000 and 9300, respectively. They showed maximum activity at pH 7.5–8.5 as well as maximum Ki within this pH range. They displayed different trypsin inhibitory activity, and this activity was completely lost on boiling for 40 min.  相似文献   

8.
  • Nitrogen (N) could affect storage root growth and development of sweet potato. To manage external N concentration fluctuations, plants have developed a wide range of strategies, such as growth changes and gene expression.
  • Five sweet potato cultivars were used to analyse the functions of N in regulating storage root growth. Growth responses and physiological indicators were measured to determine the physiological changes regulated by different N concentrations. Expression profiles of related genes were analysed via microarray hybridization data and qRT‐PCR analysis to reveal the molecular mechanisms of storage root growth regulated by different N concentrations.
  • The growth responses and physiological indicators of the five cultivars were changed by N concentration. The root fresh weight of two of the sweet potato cultivars, SS19 and GS87, was higher under low N concentrations compared with the other cultivars. SS19 and GS87 were found to be having greater tolerance to low N concentration. The expression of N metabolism and storage root growth related genes was regulated by N concentration in sweet potato.
  • These results reveal that N significantly regulated storage root growth. SS19 and GS87 were more tolerant to low N concentration and produced greater storage root yield (at 30 days). Furthermore, several N response genes were involved in both N metabolism and storage root growth.
  相似文献   

9.
高效价甘薯羽状斑驳病毒抗血清的制备   总被引:6,自引:0,他引:6  
用嫁接方法将甘薯羽状斑驳病毒(SPFMV)接种到I.setosa上扩繁,以0.2mol/LpH7.2PBK缓冲液、垫层差速离心、蔗糖密度梯度离心提取纯化SPFMV。纯化的SPFMVOD260/280的比值为1.25。将纯化的SPFMV免疫家兔制备抗血清,在环状沉淀和微量沉淀试验中,用提纯病毒测定抗血清的效价均为1:4096;以SPFMV-IgG为第一抗体,应用Dot-ELISA对甘薯和I.selosa叶片中的SPFMV分别作了测定。  相似文献   

10.
Three sweet potato varieties, Taoyuan 2, Simon 1 and Sushu 18, were pretreated with four levels of CaCl2 (0, 60, 120 and 180 kg ha?1) weekly for 50 days from planting before being subjected to non‐flooding (control) and flooding conditions. The experiment used a randomised complete block design with a split‐split plot arrangement of treatments. Young, fully expanded leaves from each plant were clipped for measuring enzyme activities and antioxidant contents. The three genotypes exhibited unique abilities and specificities through the antioxidative systems in response to flooding stress. The level of activity of the antioxidative system in sweet potato leaves was related to CaCl2 pretreatment during flooding. The ascorbate peroxidase, superoxide dismutase, glutathione reductase, reduced ascorbate, total ascorbate, reduced glutathione and malondialdehyde contents of the three sweet potato varieties under flooding stress significantly increased because of pretreatment with 60 and 120 kg ha?1 of CaCl2. Moreover, pretreatment with 60 and 120 kg ha?1 CaCl2 enhanced the flooding tolerance of all three sweet potato varieties and mitigated the effects of flooding stress. However, pretreatment with 180 kg ha?1 CaCl2 markedly decreased some enzyme activities and antioxidant contents under a flooded condition. Calcium most likely played a role in the antioxidative system in the leaves of these three sweet potato varieties under flooding stress, as an optimum amount strengthened their oxidative systems.  相似文献   

11.
Although Solanum brevidens could be infected with potato virus X (PVX), potato virus Y0 (PVY0) and PVYN, no symptoms of infection were apparent and tests by double antibody sandwich ELISA, electron microscopy and sap transmission to local lesion test plants indicated that the titres of PVX were less than a tenth of those of PVY0 and PVYN were less than a hundredth of those in infected plants of PDH40, a susceptible dihaploid clone of S. tuberosum cv. Pentland Crown. Furthermore, PVY0- and PVYN- infected leaves of S. brevidens were a poor source of inoculum in aphid transmission tests. The possibility of a common mechanism and genetic basis of resistance to PVY, PVX and potato leaf roll virus in S. brevidens is discussed.  相似文献   

12.
  • Genome size evolution and its relationship with pollen grain size has been investigated in sweet potato (Ipomoea batatas), an economically important crop which is closely related to diploid and tetraploid species, assessing the nuclear DNA content of 22 accessions from five Ipomoea species, ten sweet potato varieties and two outgroup taxa.
  • Nuclear DNA amounts were determined using flow cytometry. Pollen grains were studied using scanning and transmission electron microscopy.
  • 2C DNA content of hexaploid I. batatas ranged between 3.12–3.29 pg; the mean monoploid genome size being 0.539 pg (527 Mbp), similar to the related diploid accessions. In tetraploid species I. trifida and I. tabascana, 2C DNA content was, respectively, 2.07 and 2.03 pg. In the diploid species closely related to sweet potato e.g. I. ×leucantha, I. tiliacea, I. trifida and I. triloba, 2C DNA content was 1.01–1.12 pg. However, two diploid outgroup species, I. setosa and I. purpurea, were clearly different from the other diploid species, with 2C of 1.47–1.49 pg; they also have larger chromosomes. The I. batatas genome presents 60.0% AT bases.
  • DNA content and ploidy level were positively correlated within this complex. In I. batatas and the more closely related species I. trifida, the genome size and ploidy levels were correlated with pollen size. Our results allow us to propose alternative or complementary hypotheses to that currently proposed for the formation of hexaploid Ipomoea batatas.
  相似文献   

13.
A sweet potato (Ipomoea batatas cv. Tainong 57) trypsin inhibitor gene was introduced into tobacco plants (Nicotiana tabaccum cv. W38) by Agrobacterium tumefaciens– mediated transformation. From 30 independent transformants, three lines with high level of expression were further analyzed. The trypsin inhibitor gene, under control of the 35S CaMV promoter, led to the production of the trypsin inhibitor proteins up to 0.2% of the total protein. In insecticidal bioassays of transgenic tobacco plants, larval, growth of Spodoptera litura (F.), the tobacco cutworm, was severely retarded as compared to their growth on control plants. This observation implied that expression of sweet potato trypsin inhibitor can provide an efficient method for crop protection. Received: 29 July 1996 / Revision received: 15 November 1996 / Accepted: 8 December 1996  相似文献   

14.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

15.
Age-related Resistance in Bell Pepper to Cucumber mosaic virus   总被引:2,自引:0,他引:2  
We demonstrated the occurrence of mature plant resistance in Capsicum annuum‘Early Calwonder’ to Cucumber mosaic virus (CMV) under greenhouse conditions. When Early Calwonder plants were sown at 10 day intervals and transplanted to 10‐cm square pots, three distinct plant sizes were identified that were designated small, medium and large. Trials conducted during each season showed that CMV accumulated in inoculated leaves of all plants of each size category. All small plants (with the exception of the winter trial) developed a systemic infection that included accumulation of CMV in uninoculated leaves and severe systemic symptoms. Medium plants had a range of responses that included no systemic infection to detection of CMV in uninoculated leaves with the systemically infected plants being either symptomless or expressing only mild symptoms. None of the large plants contained detectable amounts of CMV in uninoculated leaves or developed symptoms. When plants were challenged by inoculation of leaves positioned at different locations along the stem or different numbers of leaves were inoculated, large plants continued to accumulate CMV in inoculated leaves but no systemic infection was observed. When systemic infection of large plants did occur, e.g. when CMV‐infected pepper was used as a source of inoculum, virus accumulation in uninoculated leaves was relatively low and plants remained symptomless. A time‐course study of CMV accumulation in inoculated leaves revealed no difference between small and large plants. Analyses to examine movement of CMV into the petiole of inoculated leaves and throughout the stem showed a range in the extent of infection. While all large plants contained CMV in inoculated leaves, some had no detectable amounts of virus beyond the leaf blade, whereas others contained virus throughout the length of the stem but with limited accumulation relative to controls.  相似文献   

16.
A protoplast-to-plant regeneration system has been established for sweet potato (Ipomoea batatas (L.) Lam.) and its wild relative, I. lacunosa L. Viable protoplasts, isolated from preplasmolyzed stems and petioles of in vitro-grown plants, were cultured on liquid MS (Murashige & Skoog 1962) medium that supported cell division and colony formation. Embryogenic calli of sweet potato were induced on agar-solidified MS medium supplemented with 3% (w/v) sucrose, 50 mg l-1 casamino acids, 0.2–0.5 mg l-1 2,4-d, 1.0 mg l-1 kinetin and 1.0 mg l-1 ABA. On average, 3 plants were regenerated from a single sweet potato callus subcultured on semi-solid MS medium containing 3% (w/v) sucrose, 800 mg l-1 glutamine, 2.0 mg l-1 BA or 1.0 mg l-1 kinetin and 1.0 mg l-1 GA3. Embryogenic calli of I. lacunosa L. were initiated on semi-solid MS medium containing 0.2–0.5 mg l-1 IAA and 1.0–2.0 mg l-1 BA. An average of 5 plants was regenerated from a single sweet potato callus subcultured on semi-solid MS medium containing 0.5 or 1.0 mg l-1 GA3.Abbreviations ABA abscisic acid - BA benzyladenine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole acetic acid - MES 2-(N-morpholino)-ethane sulfonic acid - NAA -naphthaleneacetic acid  相似文献   

17.
Heterodera cajani is an important nematode pest of pigeonpea in India. Evaluation of 58 pigeonpea cultivars and 61 accessions of Cajanus acutifolius, C. cajanifolius, C. grandifolius, C. lanceolatus, C. lineatus, C. mollis, C. pla-tycarpus, C. reticulatus, C. scarabaeoides, C. sericeus, C. volubilis, Flemingia macrophylla, F. stricta, F. strobilifera, Rhynchosia aurea, R. bracteata, R. cana, R. densiflora, R. minima, R. rothii, R. suaveolens and R. sublobata revealed that the tested pigeonpea cultivars lacked resistance to H. cajani. Eight accessions of wild relatives were resistant and 20 accessions were moderately resistant. Based on the white cyst number on roots and low plant-to-plant variation, two accessions of C. scarabaeoides (ICPWs 111 and 128), three accessions of Flemingia spp. (ICPWs 194, 202 and 203), and one accession each of R. rothii (ICPW 257), R. densiflora (ICPW 224), and R. aurea (ICPW 210) were identified as resistant and promising for use in intergeneric hybridisation programmes.  相似文献   

18.
19.
During 2010–2011, a severe leaf spot disease of sweet potato (Ipomoea batatas) was found in Haikou City, Hainan province of China. The disease is characterized with large, irregular, brown, necrotic lesions on the margin or in the centre of leaves. A species of Stemphylium was consistently recovered from pieces of symptomatic tissues on PDA. Based on morphological characteristics and molecular identification by rDNA‐ITS gene analysis, the fungal species was identified as Stemphylium solani Weber, and its pathogenicity was confirmed by Koch's postulates. This is the first report of leaf spot on sweet potato caused by Ssolani in China.  相似文献   

20.
Ipomoea trifida (H. B. K.) G. Don. is the most likely diploid ancestor of the hexaploid sweet potato, I. batatas (L.) Lam. To assist in analysis of the sweet potato genome, de novo whole-genome sequencing was performed with two lines of I. trifida, namely the selfed line Mx23Hm and the highly heterozygous line 0431-1, using the Illumina HiSeq platform. We classified the sequences thus obtained as either ‘core candidates’ (common to the two lines) or ‘line specific’. The total lengths of the assembled sequences of Mx23Hm (ITR_r1.0) was 513 Mb, while that of 0431-1 (ITRk_r1.0) was 712 Mb. Of the assembled sequences, 240 Mb (Mx23Hm) and 353 Mb (0431-1) were classified into core candidate sequences. A total of 62,407 (62.4 Mb) and 109,449 (87.2 Mb) putative genes were identified, respectively, in the genomes of Mx23Hm and 0431-1, of which 11,823 were derived from core sequences of Mx23Hm, while 28,831 were from the core candidate sequence of 0431-1. There were a total of 1,464,173 single-nucleotide polymorphisms and 16,682 copy number variations (CNVs) in the two assembled genomic sequences (under the condition of log2 ratio of >1 and CNV size >1,000 bases). The results presented here are expected to contribute to the progress of genomic and genetic studies of I. trifida, as well as studies of the sweet potato and the genus Ipomoea in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号