首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chloroplast protein synthesis elongation factor Tu (EF-Tuchl) has been purified to near homogeneity from Euglena gracilis. Chromatography of the postribosomal supernatant of light-induced Euglena on DEAE-Sephadex reveals two forms of EF-Tuchl. Further purification has shown that one species consists of a complex between EF-Tuchl and a factor that stimulates its activity. The other species consists of free EF-TUchl. The factor has been purified from both chromatographic forms by taking advantage of the molecular weight shift that occurs upon disruption of the complex between EF-Tuchl and the stimulatory factor. EF-Tuchl consists of a single polypeptide chain with a molecular weight of about 50,000. EF-Tuchl is as active on Escherichia coli ribosomes as it is on its homologous ribosomes but displays no detectable activity on eukaryotic cytoplasmic ribosomes. It is stimulated in polymerization by E. coli EF-Ts and will form a complex with the prokaryotic factor that can be isolated by gel filtration chromatography. Like E. coli EF-Tu, it is sensitive to modification by N-ethylmaleimide and is inhibited by the antibiotic kirromycin. Thus, the chloroplast factor has many features that reflect the close relationship between prokaryotic and chloroplast translational systems.  相似文献   

2.
Elongation factor (EF) Tu promotes the binding of aminoacyl-tRNA (aa-tRNA) to the acceptor site of the ribosome. This process requires the formation of a ternary complex (EF-Tu.GTP.aa-tRNA). EF-Tu is released from the ribosome as an EF-Tu.GDP complex. Exchange of GDP for GTP is carried out through the formation of a complex with EF-Ts (EF-Tu.Ts). Mammalian mitochondrial EF-Tu (EF-Tu(mt)) differs from the corresponding prokaryotic factors in having a much lower affinity for guanine nucleotides. To further understand the EF-Tu(mt) subcycle, the dissociation constants for the release of aa-tRNA from the ternary complex (K(tRNA)) and for the dissociation of the EF-Tu.Ts(mt) complex (K(Ts)) were investigated. The equilibrium dissociation constant for the ternary complex was 18 +/- 4 nm, which is close to that observed in the prokaryotic system. The kinetic dissociation rate constant for the ternary complex was 7.3 x 10(-)(4) s(-)(1), which is essentially equivalent to that observed for the ternary complex in Escherichia coli. The binding of EF-Tu(mt) to EF-Ts(mt) is mutually exclusive with the formation of the ternary complex. K(Ts) was determined by quantifying the effects of increasing concentrations of EF-Ts(mt) on the amount of ternary complex formed with EF-Tu(mt). The value obtained for K(Ts) (5.5 +/- 1.3 nm) is comparable to the value of K(tRNA).  相似文献   

3.
4.
5.
The main function of the prokaryotic translation elongation factor Tu (EF-Tu) and its eukaryotic counterpart eEF1A is to deliver aminoacyl-tRNA to the A-site on the ribosome. In addition to this primary function, it has been reported that EF-Tu from various sources has chaperone activity. At present, little information is available about the chaperone activity of mitochondrial EF-Tu. In the present study, we have examined the chaperone function of mammalian mitochondrial EF-Tu (EF-Tumt). We demonstrate that recombinant EF-Tumt prevents thermal aggregation of proteins and enhances protein refolding in vitro and that this EF-Tumt chaperone activity proceeds in a GTP-independent manner. We also demonstrate that, under heat stress, the newly synthesized peptides from the mitochondrial ribosome specifically co-immunoprecipitate with EF-Tumt and are destabilized in EF-Tumt-overexpressing cells. We show that most of the EF-Tumt localizes on the mitochondrial inner membrane where most mitochondrial ribosomes are found. We discuss the possible role of EF-Tumt chaperone activity in protein quality control in mitochondria, with regard to the recently reported in vivo chaperone function of eEF1A.  相似文献   

6.
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species.  相似文献   

7.
8.
Polypeptide elongation factor 1 was isolated from yeast postribosomal supernatant. The highly purified factor was resolved on Ultrogel AcA-44 into two complementary fractions. One of these fractions contained two different polypeptide chains corresponding to a Ts-like elongation factor EF-1 beta gamma. The other fraction represented the light form of the factor, designated EF-1 alpha, with a molecular weight of approximately 50,000. The obtained results indicate that EF-1 from lower eukaryotes is also composed of three distinct polypeptides.  相似文献   

9.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is encoded by the ADE3 locus, yet ade3 mutants have low but detectable levels of these enzyme activities. Synthetase, cyclohydrolase, and dehydrogenase activities in an ade3 deletion strain co-purify 4,000-fold to yield a single protein species as seen on sodium dodecyl sulfate-polyacrylamide gels. The native molecular weight of the isozyme (Mr = 200,000 by gel exclusion chromatography) and the size of its subunits (Mr = 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are similar to those of C1-tetrahydrofolate synthase. Cell fractionation experiments show that the isozyme, but not C1-tetrahydrofolate synthase, is localized in the mitochondria. Genetic studies indicate that the isozyme is encoded in the nuclear genome. Peptide mapping experiments show that C1-tetrahydrofolate synthase and the isozyme are not structurally identical. However, immunotitration experiments and amino acid sequence analysis suggest that C1-tetrahydrofolate synthase and the isozyme are structurally related. We propose to call the isozyme "mitochondrial C1-tetrahydrofolate synthase."  相似文献   

10.
The cotranslational incorporation of selenocysteine into proteins is mediated by a specialized elongation factor, named SelB. Its amino-terminal three domains show homology to elongation factor EF-Tu and accordingly bind GTP and selenocysteyl-tRNASec. In addition, SelB exhibits a long carboxy-terminal extension that interacts with a secondary structure of selenoprotein mRNAs (SECIS element) positioned immediately downstream of the in-frame UGA codons specifying the sites of selenocysteine insertion. In this report, a fast and efficient method for the purification of large amounts of hexahistidine-tagged SelB is presented. After two chromatographic steps, 10 mg pure protein was isolated from 12 g wet cell pellet. Biochemical analysis of the purified protein showed that the tag does not influence the interaction of SelB with guanine nucleotides, SECIS elements, and selenocysteyl-tRNASec. In addition, the fusion protein is fully functional in mediating UGA read-through in vivo. It therefore represents an excellent model for studying the function of SelB and the mechanisms of selenocysteine incorporation.  相似文献   

11.
The membrane-associated phospholipid biosynthetic enzyme CDP-diacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) was purified 2,300-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of mitochondrial membranes, CDP-diacylglycerol-Sepharose affinity chromatography, and hydroxylapatite chromatography. The procedure resulted in a nearly homogeneous enzyme preparation as determined by native and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Radiation inactivation of mitochondrial associated and purified CDP-diacylglycerol synthase suggested that the molecular weight of the native enzyme was 114,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme preparation yielded two subunits with molecular weights of 56,000 and 54,000. Antibodies prepared against the purified enzyme immunoprecipitated CDP-diacylglycerol synthase activity and subunits. CDP-diacylglycerol synthase activity was dependent on magnesium ions and Triton X-100 at pH 6.5. Thio-reactive agents inhibited activity. The activation energy for the reaction was 9 kcal/mol, and the enzyme was thermally labile above 30 degrees C. The Km values for CTP and phosphatidate were 1 and 0.5 mM, respectively, and the Vmax was 4,700 nmol/min/mg. Results of kinetic and isotopic exchange reactions suggested that the enzyme catalyzes a sequential Bi Bi reaction mechanism.  相似文献   

12.
The membrane-associated phospholipid biosynthetic enzyme phosphatidylinositol kinase (ATP:phosphatidylinositol 4-phosphotransferase, EC 2.7.1.67) was purified 8,000-fold from Saccharomyces cerevisiae. The purification procedure included Triton X-100 solubilization of microsomal membranes, DE-52 chromatography, hydroxylapatite chromatography, octyl-Sepharose chromatography, and two consecutive Mono Q chromatographies. The procedure resulted in the isolation of a protein with a subunit molecular weight of 35,000 that was 96% of homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidylinositol kinase activity was associated with the purified Mr 35,000 subunit. Maximum phosphatidylinositol kinase activity was dependent on magnesium ions and Triton X-100 at pH 8. The true Km values for phosphatidylinositol and MgATP were 70 microM and 0.3 mM, and the true Vmax was 4,750 nmol/min/mg. The turnover number for the enzyme was 166 min-1. Results of kinetic and isotopic exchange reactions indicated that phosphatidylinositol kinase catalyzed a sequential Bi Bi reaction mechanism. The enzyme bound to phosphatidylinositol prior to ATP and phosphatidylinositol 4-phosphate was the first product released in the reaction. The equilibrium constant for the reaction indicated that the reverse reaction was favored in vitro. The activation energy for the reaction was 31.5 kcal/mol, and the enzyme was thermally labile above 30 degrees C. Phosphatidylinositol kinase activity was inhibited by calcium ions and thioreactive agents. Various nucleotides including adenosine and S-adenosylhomocysteine did not affect phosphatidylinositol kinase activity.  相似文献   

13.
The SOC8 gene was isolated as an extragenic suppressor of cdc8 mutant cells. It has been suggested that SOC8 is allelic with the URA6 gene which was originally identified as a uridine monophosphate kinase. In this article, we describe the purification of the uridine monophosphate kinase from a yeast Saccharomyces cerevisae strain that overproduces the activity 8-fold. The protein was purified through Fast-Flow Q-Separose, phosphocellulose, blue-agarose, and fast protein liquid chromatography Superose 12 columns, and appears homogeneous by sodium dodecyl sulfate-polyacrylamide gel analysis. The uridine monophosphate kinase contains a single polypeptide with a molecular weight of 25,000, as evidence by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration analysis. The amino acid composition has also been determined. Substrate specificity studies show that the relative activity of nucleoside monophosphates is in order of UMP greater than dUMP, and to a lesser extent, dTMP, GMP, and dGMP. The Km and Vm of UMP, dUMP, and dTMP have been determined.  相似文献   

14.
The three-dimensional structure of the bovine mitochondrial elongation factor (EF)-Tu.Ts complex (EF-Tumt.Tsmt) has been determined to 2.2-A resolution using the multi-wavelength anomalous dispersion experimental method. This complex provides the first insight into the structure of EF-Tsmt. EF-Tsmt is similar to Escherichia coli and Thermus thermophilus EF-Ts in the amino-terminal domain. However, the structure of EF-Tsmt deviates considerably in the core domain with a five-stranded beta-sheet forming a portion of subdomain N of the core. In E. coli EF-Ts, this region is composed of a three-stranded sheet. The coiled-coil domain of the E. coli EF-Ts is largely eroded in EF-Tsmt, in which it consists of a large loop packed against subdomain C of the core. The conformation of bovine EF-Tumt in complex with EF-Tsmt is distinct from its conformation in the EF-Tumt.GDP complex. When domain III of bovine EF-Tumt.GDP is superimposed on domain III of EF-Tumt in the EF-Tumt.Tsmt complex, helix B from domain I is also almost superimposed. However, the rest of domain I is rotated relative to this helix toward domain II, which itself is rotated toward domain I relative to domain III. Extensive contacts are observed between the amino-terminal domain of EF-Tsmt and domain I of EF-Tumt. Furthermore, the conserved TDFV sequence of EF-Tsmt also contacts domain I with the side chain of Asp139 contacting helix B of EF-Tumt and inserting the side chain of Phe140 between helices B and C. The structure of the EF-Tumt.Tsmt complex provides new insights into the nucleotide exchange mechanism and provides a framework for explaining much of the mutational data obtained for this complex.  相似文献   

15.
Membrane-associated phosphatidate phosphatase (EC 3.1.3.4) was purified 9833-fold from the yeast Saccharomyces cerevisiae. The purification procedure included sodium cholate solubilization of total membranes followed by chromatography with DE53, Affi-Gel Blue, hydroxylapatite, Mono Q, and Superose 12. The procedure resulted in the isolation of a protein with a subunit molecular weight of 91,000 that was apparently homogeneous as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphatidate phosphatase activity was associated with the purified 91,000 subunit. The molecular weight of the native enzyme was estimated to be 93,000 by gel filtration chromatography with Superose 12. Maximum phosphatidate phosphatase activity was dependent on magnesium ions and Triton X-100 at pH 7. The Km value for phosphatidate was 50 microM, and the Vmax was 30 mumol/min/mg. The turnover number (molecular activity) for the enzyme was 2.7 x 10(3) min-1 at pH 7 and 30 degrees C. The activation energy for the reaction was 11.9 kcal/mol, and the enzyme was labile above 30 degrees C. Phosphatidate phosphatase activity was sensitive to thioreactive agents. Activity was inhibited by the phospholipid intermediate CDP-diacylglycerol and the neutral lipids diacylglycerol and triacylglycerol.  相似文献   

16.
17.
18.
R L Nussbaum  C T Caskey 《Biochemistry》1981,20(16):4584-4590
Hypoxanthine-guanine phosphoribosyltransferase (HPRT) was purified 12 000-fold to homogeneity from yeast by a three-step procedure including acid precipitation, anion-exchange chromatography, and guanosine 5' -monophosphate affinity chromatography. The enzyme is a dimer consisting of two, probably identical, subunits of Mr 29 500. The enzyme recognized hypoxanthine and guanine, but not adenine or xanthine, as substrates. An antiserum against both native and denatured enzyme has been raised and shown to be specific for the enzyme. The antiserum has no affinity for Chinese hamster or human HPRT but does recognize subunits of yeast HPRT as well as some cyanogen bromide fragments of the enzyme.  相似文献   

19.
Saccharomyces cerevisiae S-II was purified to near homogeneity as a protein stimulating RNA polymerase II. Four of seven lysyl endopeptidase-digested fragments of S-II were located in the PPR2 sequence reported previously. Analysis of a genomic clone of S-II revealed that S-II and PPR2 are the same protein consisting of 309 amino acid residues, and frame shifts were found in the sequence of PPR2 gene reported previously. Yeast S-II and mouse S-II showed high similarity in their amino acid sequences, especially in their amino-terminal and carboxyl-terminal regions. A gene disruption experiment showed that an S-II null mutant was not lethal under usual growth conditions, indicating that S-II is not essential for the growth of yeast.  相似文献   

20.
The elongation factor 2 (EF-2) genes of the yeast Saccharomyces cerevisiae have been cloned and characterized with the ultimate goal of gaining a better understanding of the mechanism and control of protein synthesis. Two genes (EFT1 and EFT2) were isolated by screening a bacteriophage lambda yeast genomic DNA library with an oligonucleotide probe complementary to the domain of EF-2 that contains diphthamide, the unique posttranslationally modified histidine that is specifically ADP-ribosylated by diphtheria toxin. Although EFT1 and EFT2 are located on separate chromosomes, the DNA sequences of the two genes differ at only four positions out of 2526 base pairs, and the predicted protein sequences are identical. Genetic deletion of each gene revealed that at least one functional copy of either EFT gene is required for cell viability. Messenger RNA levels of yeast EF-2 parallel cellular growth and peak in mid-log phase cultures. The EF-2 protein sequence is strikingly conserved through evolution. Yeast EF-2 is 66% identical to, and shares over 85% homology with, human EF-2. In addition, yeast and mammalian EF-2 share identical sequences at two critical functional sites: (i) the domain containing the histidine residue that is modified to diphthamide and (ii) the threonine residue that is specifically phosphorylated in vivo in mammalian cells by calmodulin-dependent protein kinase III, also known as EF-2 kinase. Furthermore, yeast EF-2 also contains the Glu-X-X-Arg-X-Ile-Thr-Ile "effector" sequence motif that is conserved among all known elongation factors, and its GTP-binding domain exhibits strong homology to the G-domain of Escherichia coli elongation factor Tu (EF-Tu) and other G-protein family members. Based upon these observations, we have modeled the G-domain of the deduced EF-2 protein sequence to the solved crystallographic structure for EF-Tu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号