共查询到20条相似文献,搜索用时 15 毫秒
1.
Methods for genetically mapping the end points of tandem duplications of the rII region of bacteriophage T4D are presented. Analysis of ten duplications indicates (1) that the position of duplication end points and therefore the length of the duplicated segment differ in strains of independent origin; (2) that there is a direct relationship between segregation frequency and length; (3) that segregation is more frequent than expected on the basis of standard genetic mapping; and (4) that while duplications frequently include non-rII genetic material, frequently they do not include the entire rII region. The duplications studied range from less than two to about five cistrons in length. 相似文献
2.
In an attempt to elucidate the mechanism of delayed DNA synthesis in phage T4, Escherichia coli B cells were infected with H17 (an amber mutant defective in gene 52 possessing a "DNA-delay" phenotype). The fate of (14)C-labeled H17 parental DNA after infection was followed: we could show that this DNA sediments more slowly in neutral sucrose than wild-type DNA 3 min postinfection. In pulse-chase experiments progeny DNA was found to undergo detachment from the membrane at 12 min postinfection. Reattachment to the membrane was found to be related to an increase in rate of DNA synthesis. A nucleolytic activity that is absent from cells infected by wild-type phage and from uninfected cells could be detected in extracts prepared from mutant-infected cells. In contrast, degradation of host DNA was found to be less extensive in am H17 compared with wild-type infected cells. Addition of chloramphenicol to mutant-infected cells 10 min postinfection inhibited the appearance of a nuclease activity on one hand and suppressed the "DNA-delay" phenotype on the other hand. We conclude that the gene 52 product controls the activity of a nuclease in infected cells whose main function may be specific strand nicking in association with DNA replication. This gene product might directly attack both E. coli and phage T4 DNA, or indirectly determine their sensitivity to degradation by another nuclease. 相似文献
3.
4.
5.
Beverly S. Emanuel 《Journal of virology》1973,12(2):408-412
Hybrid density replicative T4 DNA was isolated from CsCl, sheared, and reanalyzed in CsCl. The results rule out a branched model for T4 DNA replication and confirm that T4 DNA replicates to a conventional, semiconservative, colinear hybrid. 相似文献
6.
Marker-Dependent Recombination in T4 Bacteriophage. IV. Recombinational Effects of Antimutator T4 DNA Polymerase
下载免费PDF全文

Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates. 相似文献
7.
Channa Shalitin 《Journal of virology》1967,1(3):569-575
8.
Polarized Pairing and Recombination in Tandem Duplications of the White Gene in DROSOPHILA MELANOGASTER 总被引:2,自引:1,他引:2
下载免费PDF全文

M. M. Green 《Genetics》1966,54(3):881-885
9.
10.
The role of T4 gene 49 in recombination was investigated using its conditional-lethal amber (am) and temperature-sensitive (ts) mutants. When measured in genetic tests, defects in gene 49 produced a recombination-deficient phenotype. However, DNA synthesized in cells infected with a ts mutant (tsC9) at a nonpermissive temperature appeared to be in a recombinogenic state: after restitution of gene function by shifting to a permissive temperature, the recombinant frequency among progeny increased rapidly even when DNA replication was blocked by an inhibitor. Growth of a gene 49-defective mutant was suppressed by an additional mutation in gene uvsX, but recombination between rII markers was not. 相似文献
11.
A plasmid vector for expression of bacteriophage T4 gene product 11 (gp11) in E. coli cells has been constructed. Gp11 is a baseplate protein that connects short tail fibers providing irreversible adsorption of the virus on a cell. A method based on chromatography on hydroxyapatite has been developed for purification of recombinant gp11. The protein is active in an in vitro complementation assay and transforms defective phage particles lacking gp11 into infective ones. Gel filtration data suggest that the biologically active protein is a trimer. According to CD spectroscopy and sequence analysis data, the polypeptide chain of gp11 contains not less than 20% -helical segments, about 30% -structure, and belongs to the class of / structural proteins. 相似文献
12.
13.
Huidong Zhang Seung-Joo Lee Arkadiusz W. Kulczyk Bin Zhu Charles C. Richardson 《The Journal of biological chemistry》2012,287(41):34273-34287
Bacteriophage T7 expresses two forms of gene 4 protein (gp4). The 63-kDa full-length gp4 contains both the helicase and primase domains. T7 phage also express a 56-kDa truncated gp4 lacking the zinc binding domain of the primase; the protein has helicase activity but no DNA-dependent primase activity. Although T7 phage grow better when both forms are present, the role of the 56-kDa gp4 is unknown. The two molecular weight forms oligomerize by virtue of the helicase domain to form heterohexamers. The 56-kDa gp4 and any mixture of 56- and 63-kDa gp4 show higher helicase activity in DNA unwinding and strand-displacement DNA synthesis than that observed for the 63-kDa gp4. However, single-molecule measurements show that heterohexamers have helicase activity similar to the 63-kDa gp4 hexamers. In oligomerization assays the 56-kDa gp4 and any mixture of the 56- and 63-kDa gp4 oligomerize to form more hexamers than does the 63-kDa gp4. The zinc binding domain of the 63-kDa gp4 interferes with hexamer formation, an inhibition that is relieved by the insertion of the 56-kDa species. Compared with the 63-kDa gp4, heterohexamers synthesize a reduced amount of oligoribonucleotides, mediated predominately by the 63-kDa subunits via a cis mode. During coordinated DNA synthesis 7% of the tetraribonucleotides synthesized are used as primers by both heterohexamers and hexamers of the 63-kDa gp4. Overall, an equimolar mixture of the two forms of gp4 shows the highest rate of DNA synthesis during coordinated DNA synthesis. 相似文献
14.
Conformation behavior of phase T2 DNA in the process of its interaction with it E. coli RNA polymerase was studied using spin labeling technique. T2 DNA was modified by the spin-labeled imidazole at OH-groups of glucosylated cytidine residues. It was shown that the binding of RNA polymerase under the conditions favoring the formation of open promoter complexes induces specific conformational changes in the spin-labeled DNA. The observed conformational changes encompass not only the promoter regions of DNA which are involved in direct contacts with RNA polymerase molecules but extend over remote DNA sites (long-range effect). In relation to this effect, current theoretical models of DNA dynamics are discussed. 相似文献
15.
This paper describes several technical improvements in the sucrose-plasmolyzed cell system used in earlier experiments on DNA synthesis in situ with Escherichia coli infected by DNA-defective mutants of bacteriophage T4 (W. L. Collinsworth and C. K. Mathews, J. Virol. 13:908-915, 1974). Using this system, which is based primarily on that of M. G. Wovcha et al. (Proc. Natl. Acad. Sci. U.S.A. 70:2196-2200, 1973), we reinvestigated the properties of mutants bearing lesions in genes 1, 41, and 62, and we resolved some disagreements with data reported from that laboratory. We also asked whether the DNA-delay phenotype of T4 mutants is related to possible early leakage of DNA precursors from infected cells. Such cells display defective DNA synthesis in situ, even when ample DNA precursors are made available. Thus, the lesions associated with these mutations seem to manifest themselves at the level of macromolecular metabolism. Similarly, we examined an E. coli mutant defective in its ability to support T4 production, apparently because of a lesion affecting DNA synthesis (L. Simon et al., Nature [London] 252:451-455). In the plasmolyzed cell system, reduced nucleotide incorporation is seen, indicating also that the genetic defect does not involve DNA precursor synthesis. The plasmolyzed cell system incorporates deoxynucleotide 5'-monophosphates into DNA severalfold more rapidly than the corresponding 5'-triphosphates. This is consistent with the idea that DNA precursor-synthesizing enzymes are functionally organized to shuttle substrates to their sites of utilization. 相似文献
16.
17.
18.
New Late Gene, dar, Involved in DNA Replication of Bacteriophage T4 I. Isolation, Characterization, and Genetic Location 总被引:2,自引:6,他引:2
下载免费PDF全文

Suppressors of gene 59-defective mutants were isolated by screening spontaneous, temperature-sensitive (ts) revertants of the amber mutant, amC5, in gene 59. Six ts revertants were isolated. No gene 59-defective ts recombinant was obtained by crossing each ts revertant with the wild type, T4D. However, suppressors of gene 59-defective mutants were obtained from two of these ts revertants. These suppressor mutants are referred to as dar (DNA arrested restoration). dar mutants specifically restored the abnormalities, both in DNA synthesis and burst size, caused by gene 59-defective mutants to normal levels. It is unlikely that dar mutants are nonsense suppressors since theý failed to suppress amber mutations in 11 other genes investigated. The genetic expression of dar is controlled by gene 55; therefore, dar is a late gene. The genetic location of dar has been mapped between genes 24 and 25, a region contiguous to late genes. dar appears to be another nonessential gene of T4 since burst sizes of dar were almost identical to those of the wild type. Mutations in dar did not affect genetic recombination and repair of UV-damaged DNA, but caused a sensitivity to hydroxyurea in progeny formation. The effect of the dar mutation on host DNA degradation cannot account for its hydroxyurea sensitivity. dar mutant alleles were recessive to the wild-type allele as judged by restoration of arrested DNA synthesis. The possible mechanisms for the suppression of defects in gene 59 are discussed. 相似文献
19.
In an attempt to establish whether Escherichia coli B infected with N130 (an amber mutant defective in gene 46) is recombination-deficient, the postinfection fate of (14)C-labeled N130 parental deoxyribonucleic acid (DNA) was followed, its amount in complex with the host cell membrane being determined in sucrose gradients after mild lysis of the infected cells. The parental DNA was found to undergo gradual detachment from the membrane during infection. Pulse-chase experiments similarly showed that newly synthesized DNA is normally attached to the host cell membrane and is detached by endonucleolytic breakage at a late stage of infection. The conclusion is that only attached DNA molecules are replicated by membrane-bound replicase, whereas those detached by endonucleolytic breakage are not. It thus seems that the gene 46 product controls the activity of a nuclease whose main function is recombination of DNA nicked by endonuclease, thereby attaching it to the host cell membrane. The rate of T4 DNA synthesis is apparently governed by the efficiency of recombination. Supporting evidence was found in experiments with the double mutant N130 x N134 (genes 46, 33). 相似文献
20.
Two- and three-factor crosses showed that the T4 rIII gene is located between genes 31 and 30 rather than between genes 31 and 63. 相似文献