首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提高外源基因在巴斯德毕赤酵母中表达量的研究进展   总被引:4,自引:0,他引:4  
巴斯德毕赤酵母 (Pichiapastoris)表达系统是基因工程研究中广泛使用的真核表达系统 ,与现有的其它表达系统相比 ,巴斯德毕赤酵母在表达产物的糖基化修饰、折叠、加工、外分泌及表达量等方面有明显的优势。外源基因在该系统中表达时 ,由于受基因内部的结构、分泌信号、甲醇诱导的浓度及诱导时间、培养温度、启动子、表达环境的 pH值等诸多因素的影响 ,一些外源蛋白的表达也存在着表达不够稳定、表达量较低 ,甚至不表达的情况。对影响巴斯德毕赤酵母表达的各种可能因素进行了分析 ,结合具体实践经验 ,就如何提高外源基因在巴斯德毕赤酵母中表达量的问题进行了综述。  相似文献   

2.
毕赤氏酵母醇氧化酶-2基因启动子突变体的分离和鉴定   总被引:2,自引:1,他引:1  
巴斯毕赤我苯酵母表达系统已被广泛用于生产外源蛋白的寄主菌。利用该系统将外源基因整合交换到染色体上时,AOX1基因被破力的甲醇利用缓慢,给发本报生产千古 定影响。在不改变现有表达系统前提下,从AOXI功能缺陷 株分离出Mut^+自发突变化突变体,通过突变体在甲醇培养基中生长曲线的测定,HSA表达产物的聚丙烯酰胺凝胶电泳检测,证明突变体的甲醇利用能力和蛋白表达比原始菌株大大提高,突变体AOX2基因上游  相似文献   

3.
4.
5.
We have developed two novel schemes for the direct selection of peroxisome-biogenesis-defective (pex) mutants of the methylotrophic yeast Pichia pastoris. Both schemes take advantage of our observation that methanol-induced pex mutants contain little or no alcohol oxidase (AOX) activity. AOX is a peroxisomal matrix enzyme that catalyzes the first step in the methanol-utilization pathway. One scheme utilizes allyl alcohol, a compound that is not toxic to cells but is oxidized by AOX to acrolein, a compound that is toxic. Exposure of mutagenized populations of AOX-induced cells to allyl alcohol selectively kills AOX-containing cells. However, pex mutants without AOX are able to grow. The second scheme utilizes a P. pastoris strain that is defective in formaldehyde dehydrogenase (FLD), a methanol pathway enzyme required to metabolize formaldehyde, the product of AOX. AOX-induced cells of fld1 strains are sensitive to methanol because of the accumulation of formaldehyde. However, fld1 pex mutants, with little active AOX, do not efficiently oxidize methanol to formaldehyde and therefore are not sensitive to methanol. Using these selections, new pex mutant alleles in previously identified PEX genes have been isolated along with mutants in three previously unidentified PEX groups.  相似文献   

6.
We isolated two lipase genes LIPY7, LIPY8 from Yarrowia lipolytica CGMCC (China general microbiological culture collection center) AS 2.1216. The LIPY7 and LIPY8 genes encode a 366 and a 371-amino acid protein, respectively. The lipase genes with 6 x His tag sequence were cloned into expression vector pPIC9K and successfully integrated into a heterologous fungal host Pichia pastoris KM71, respectively. The recombinants were induced by methanol to secrete active lipases into cultural medium. The recombinant lipases were also purified and characterized.  相似文献   

7.
The first committed steps in the biosynthesis of the two cyanogenic glucosides linamarin and lotaustralin in cassava are the conversion of L-valine and L-isoleucine, respectively, to the corresponding oximes. Two full-length cDNA clones that encode cytochromes P-450 catalyzing these reactions have been isolated. The two cassava cytochromes P-450 are 85% identical, share 54% sequence identity to CYP79A1 from sorghum, and have been assigned CYP79D1 and CYP79D2. Functional expression has been achieved using the methylotrophic yeast, Pichia pastoris. The amount of CYP79D1 isolated from 1 liter of P. pastoris culture exceeds the amounts that putatively could be isolated from 22,000 grown-up cassava plants. Each cytochrome P-450 metabolizes L-valine as well as L-isoleucine consistent with the co-occurrence of linamarin and lotaustralin in cassava. CYP79D1 was isolated from P. pastoris. Reconstitution in lipid micelles showed that CYP79D1 has a higher k(c) value with L-valine as substrate than with L-isoleucine, which is consistent with linamarin being the major cyanogenic glucoside in cassava. Both CYP79D1 and CYP79D2 are present in the genome of cassava cultivar MCol22 in agreement with cassava being allotetraploid. CYP79D1 and CYP79D2 are actively transcribed, and production of acyanogenic cassava plants would therefore require down-regulation of both genes.  相似文献   

8.
The methylotrophic yeast Pichia pastoris has been successfully used for the expression of many heterologous proteins. The level of expression of some of these proteins depends on the copy number of the gene inserted into the yeast genome. Several methods have been reported in the past few years for the isolation of multicopy transformants. One of these methods used an expression vector that contains the bacterial kanamycin-resistance gene Tn903kanr, which confers resistance to G418. Here, we report a different selection method in a mutant strain of P. pastoris (his3-) based on the resistance to 3-amino-1,2,4 triazol, with a vector containing the HIS3 gene from Saccharomyces cerevisiae. Using this selection method, we isolated here P. pastoris transformants containing several copies of the dextranase gene (dex) from Penicillium minioluteum.  相似文献   

9.
在以前的研究中,通过蛋白质工程技术获得了三突变体白细胞介素_2基因(编码125位半胱氨酸→丙氨酸;18位亮氨酸→蛋氨酸;19位亮氨酸→丝氨酸) ,并在毕赤酵母中加以表达。进一步优化表达条件,其最适诱导条件:80 %以上的通气,诱导2d ,初始pH60 ,甲醇终浓度为10%。在上述条件下表达量占菌体总蛋白的30%以上,大约200mg L。建立了一套从毕赤酵母表达上清中分离纯化分泌型表达蛋白IL_2的方法,经离心,超滤浓缩,强阳离子交换S柱和分子筛层析得到纯化的突变型和野生型IL-2 ;其得率为27% ,纯度达电泳纯并且HPLC检测只有一个峰。纯化的突变蛋白对CTLL-2细胞具有刺激性;与野生型IL-2相比,在各种温度条件下储存的突变蛋白保留有更高的活性;突变型IL-2的活力是野生型的4~5倍,具有更高的利用价值。  相似文献   

10.
人工合成VNP基因,通过酶连构建HSA和VNP基因的融合基因,插入表达载体pPIC9K,电转至毕赤酵母GS115,构建成工程茵,甲醇诱导表达。重组表达质粒经双酶切验证构建正确;表达产物经SDS-PAGE分析分子量为69 000 Da,与理论值相符;Western blot鉴定产物兼有HSA和VNP免疫原性,说明其为杂合分子;兔胸主动脉环离体灌流实验证明融合蛋白具有舒张血管活性。本研究说明毕赤酵母适于HSA-VNP融合蛋白的表达,为进一步开发稳定的VNP药物提供了生物制备方法。  相似文献   

11.
Pexophagy: the selective autophagy of peroxisomes   总被引:1,自引:0,他引:1  
Pichia pastoris and Hansenula polymorpha are methylotrophic yeasts capable of utilizing methanol, as a sole source of carbon and energy. Growth of these yeast species on methanol requires the synthesis of cytosolic and peroxisomal enzymes combined with the proliferation of peroxisomes. Peroxisomes are also abundantly present in the alkane-utilizing yeast Yarrowia lipolytica upon growth of cells on oleic acid. This feature has made these yeast species attractive model systems to dissect the molecular mechanisms controlling peroxisome biogenesis. We have found that upon glucose- or ethanol-induced catabolite inactivation, metabolically superfluous peroxisomes are rapidly and selectively degraded within the vacuole by a process called pexophagy, the selective removal of peroxisomes by autophagy-like processes. Utilizing several genetic screens, we have identified a number of genes that are essential for pexophagy. In this review, we will summarize our current knowledge of the molecular events of pexophagy.  相似文献   

12.
巴氏毕赤酵母表达系统的特点及其研究进展   总被引:9,自引:0,他引:9  
巴氏毕赤酵母表达系统具有真核生物表达的特点。本文综述了巴氏毕赤酵母菌及其表达载体的特点以及外源基因在该系统中表达存在的一些问题。  相似文献   

13.
In the methylotrophic yeast Pichia pastoris, alcohol oxidase (AOX) is a key enzyme involved in the dissimilation of methanol. Heterologous proteins are usually expressed under the control of the AOX1 promoter, which drives the expression of alcohol oxidase 1 in the wild-type strain. This study investigates the regulation of the alcohol oxidase enzyme of a recombinant P. pastoris Mut+ strain in cultures on glycerol and methanol as sole carbon sources and in mixed substrate cultures on both substrates. The aim was to have a better insight in the transition from growth on glycerol to growth on methanol, which is a key step in standard high cell density P. pastoris cultures for the production of foreign proteins. Nutrient shifts in chemostat cultures showed that after growth on glycerol use of mixed feeds of glycerol and methanol allowed faster induction of alcohol oxidase and faster adaptation of cellular metabolism than with a feed containing methanol as sole carbon source. The results of this study showed also how critical it is to avoid transient methanol accumulation during P. pastoris cultures operated at low residual methanol concentrations. Indeed, pulse experiments during chemostat cultures showed that sudden increase in methanol concentrations in cultures performed under methanol-limited or dual methanol and glycerol-limited growth conditions leads to wash-out of the culture because of too high consumption rate of methanol, which leads to excretion of toxic intermediates. High rate of methanol consumption was due to high specific AOX activities observed at low residual methanol concentrations.  相似文献   

14.
Recently, we demonstrated that leaf wounding results in the synthesis of pectin methylesterase (PME), which causes the plant to release methanol into the air. Methanol emitted by a wounded plant increases the accumulation of methanol-inducible gene mRNA and enhances antibacterial resistance as well as cell-to-cell communication, which facilitates virus spreading in neighboring plants. We concluded that methanol is a signaling molecule involved in within-plant and plant-to-plant communication. Methanol is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of methanol into toxic formaldehyde. However, recent data showed that methanol is a natural compound in normal, healthy humans. These data call into question whether human methanol is a metabolic waste product or whether methanol has specific function in humans. Here, to reveal human methanol-responsive genes (MRGs), we used suppression subtractive hybridization cDNA libraries of HeLa cells lacking ADH and exposed to methanol. This design allowed us to exclude genes involved in formaldehyde and formic acid detoxification from our analysis. We identified MRGs and revealed a correlation between increases in methanol content in the plasma and changes in human leukocyte MRG mRNA levels after fresh salad consumption by volunteers. Subsequently, we showed that the methanol generated by the pectin/PME complex in the gastrointestinal tract of mice induces the up- and downregulation of brain MRG mRNA. We used an adapted Y-maze to measure the locomotor behavior of the mice while breathing wounded plant vapors in two-choice assays. We showed that mice prefer the odor of methanol to other plant volatiles and that methanol changed MRG mRNA accumulation in the mouse brain.We hypothesize that the methanol emitted by wounded plants may have a role in plant-animal signaling. The known positive effect of plant food intake on human health suggests a role for physiological methanol in human gene regulation.  相似文献   

15.
In the last few years the Pichia pastoris expression system has been gaining more and more interest for the expression of recombinant proteins. Many groups have employed fermentation technology in their investigations because the system is fairly easy to scale up and suitable for the production in the milligram to gram range. A large number of heterologous proteins from different sources has been expressed, but the fermentation process technology has been investigated to a lesser extent. A large number of fermentations are carried out in standard bioreactors that may be insufficiently equipped to meet the demands of high-cell-density fermentations of methylotrophic yeasts. In particular, the lack of on-line methanol analysis leads to fermentation protocols that may impair the optimal expression of the desired products. We have used a commercially available methanol sensor to investigate in detail the effects of supplementary glycerol feeding while maintaining a constant methanol concentration during the induction of a Mut(+) strain of Pichia pastoris. Specific glycerol feed rates in the range of 38-4.2 mg. g(-1). h(-1) (mg glycerol per gram fresh weight per hour) were investigated. Expression of the recombinant scFv antibody fragment was only observed at specific feed rates below 6 mg. g(-1). h(-1). At low specific feed rates, growth was even lower than with methanol as the sole carbon source and the harvest expression level of the scFv was only half of that found in the control fermentation. These results show that glycerol inhibits expression driven by the AOX1 promoter even at extremely limited availability and demonstrate the benefits of on-line methanol control in Pichia fermentation research.  相似文献   

16.
17.
A Rhizopus oryzae lipase gene has been expressed in Pichia pastoris as a reporter using the formaldehyde dehydrogenase 1 promoter (PFLD1) of this organism, which has been reported to be strongly and independently induced by either methanol as sole carbon source or methylamine as sole nitrogen source. Levels of lipase expressed and secreted under the control of the PFLD1 at different induction conditions have been compared to those obtained with the commonly used alcohol oxidase 1 promoter (PAOX1) in small (shake flask) and 1l bioreactor batch cultures. PFLD1-controlled heterologous gene expression was strongly repressed by excess of either glycerol or glucose-but not sorbitol-during growth using methylamine both as sole nitrogen source and inducing substrate. Co-induction of PFLD1 with methanol and methylamine resulted in a synergistic effect on extracellular lipase expression levels. In all tested conditions, the substitution of ammonium for methylamine as carbon source provoked a clear decrease in the specific growth rate and yield of biomass per gram of carbon source. Overall, this study demonstrates that the PFLD1 promoter is at least as efficient as the PAOX1 for extracellular expression of heterologous proteins in P. pastoris bioreactor cultures and provides a first basis for the further design of methanol-free high cell density fed-batch cultivation strategies for controlled overproduction of foreign proteins in P. pastoris.  相似文献   

18.
Pan R  Zhang J  Shen WL  Tao ZQ  Li SP  Yan X 《FEMS yeast research》2011,11(3):292-298
A rapid and convenient method is presented for unmarked gene deletions in Pichia pastoris. Cre/mutated lox system, Zeocin(?) (Invitrogen) resistance marker and homologous arms were spliced together by fusion PCR to generate the gene disruption cassettes (homologous region-lox71-Cre-ZeoR-lox66-homologous region), which could be integrated into the P. pastoris genome via homologous recombination. After transferring double-cross-over recombinants to methanol induction medium, transient expression of Cre recombinase caused the recombination of lox71-Cre-ZeoR-lox66 fragment into a double-mutant lox72 site, thus excising the Cre-ZeoR cassette from the P. pastoris genome. As the double-mutant lox72 site displays strongly reduced binding affinity for Cre recombinase, this method could be used sequentially to disrupt P. pastoris genes without introducing selectable markers. The effectiveness of this strategy was verified by introducing both single and double gene deletions into the P. pastoris genome.  相似文献   

19.
In this study, we demonstrate a novel method for unmarked genetic modification of the methylotrophic yeast Pichia pastoris , in which the Escherichia coli toxin gene mazF was used as a counter-selectable marker. mazF was placed under the tightly controlled AOX1 promoter, and the induced expression of MazF in P. pastoris halted cell growth. A modular plasmid was constructed in which mazF and a Zeocin resistance gene acted as counter-selectable and active-selectable markers, respectively, and the MazF-ZeoR cassette was flanked by two direct repeats for marker recycling. Linearized delivery vectors constructed from the modular plasmid were integrated into the P. pastoris genome via homologous recombination, introducing genetic modifications. Upon counter-selection with methanol medium, which induces the AOX1 promoter, the markers were recycled efficiently via homologous recombination between the direct repeats. We used this method successfully to knock-out the ARG1 and MET2 genes, knock-in a green fluorescent protein expression cassette, and perform site-directed mutagenesis on the ARG1 gene, all without introducing unwanted selection markers. The novel method allows repeated use of the selectable marker gene for multiple modifications and will be a useful tool for P. pastoris studies.  相似文献   

20.
In this article we report the production of human proinsulin C-peptide with 31 amino acid residues from a precursor overexpressed in Pichia pastoris. A C-peptide precursor expression plasmid containing nine C-peptide genes in tandem was constructed and used to transform P. pastoris. Transformants with a high copy number of the C-peptide precursor gene integrated into the chromosome of P. pastoris were selected. In high-density fermentation in a 300 liter fermentor using a simple culture medium composed mainly of salt and methanol, the C-peptide precursor was overexpressed to a level of 2.28 g per liter. A simple procedure was established to purify the expression product from the culture medium. The purified C-peptide precursor was converted into C-peptide by trypsin and carboxypeptidase B joint digestion. The yield of C-peptide with a purity of 96% was 730 mg per liter of culture. The purified C-peptide was characterized by mass spectrometry, N- and C-terminal amino acid sequencing, and sodium dodecylsulfate-polyacrylamide gel electrophoresis. Key words proinsulin; C-peptide; Pichia pastoris  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号