首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulation time (CT) is markedly prolonged when arterial pressure is extremely elevated by global brain ischemia which elicits also bradycardia, decrease in cardiac output and apnea in anesthetized rabbits. To study the cause of the prolongation of CT, we measured separately CT in the large veins, cardiopulmonary circulation system (CPS) and large arteries by a dye-densitometer before and during the brain ischemia, and also examined effects of apnea and bradycardia on CT in the large veins and CPS. CT during the brain ischemia was prolonged in each portion as compared to that before the brain ischemia. The prolongation was shortest in the large veins and longest in the CPS. During the brain ischemia with apnea, there was a significant linear relationship between heart rate and the inverses of CT in the large veins, but not in the CPS. When artificial ventilation was performed during brain ischemia-induced apnea, the linear relationship became significant also in the CPS. We conclude as follows; During global brain ischemia the prolongation of CT occurs primarily in the large arteries due to constriction of the small arteries and it progresses towards the CPS and large veins. The bradycardia prolongs CT in the large veins and CPS, and the apnea may produce hypoxic pulmonary vasoconstriction which may also contribute to the prolongation of CT in the CPS.  相似文献   

2.
Molecular genetic maps continue to play a major role in breeding of crop species. The common bean genetic map of the recombinant inbred line population IAC-UNA × CAL 143 (UC) has been used to detect loci controlling important agronomic traits in common bean. In the current study, new microsatellite markers were added to the UC map and the linkage analysis was refined using current genomic resources of common bean, in order to identify quantitative resistance loci (QRL) associated with different races of the anthracnose pathogen. A single race inoculation was conducted in greenhouse using four plants per plot. Both race-specific and joint-adjusted disease severity means, obtained from linear-mixed model, were used to perform multiple interval mapping (MIM) and multi-trait MIM (MTMIM). In total, 13 and 11 QRL were identified by MIM and MTMIM analyses, respectively; with nine being observed in both analyses. ANT02.1UC and ANT07.1UC showed major effects on resistance both for MIM and MTMIM. Common major QRL for resistance to the three anthracnose races were expected, since high genetic pairwise-correlation was observed between the race-specific and joint-adjusted disease severity means. Therewith, both ANT02.1 and ANT07.1 can be regarded as valuable targets for marker-assisted selection; and so, putative genes potentially involved in the resistance response were identified in these QRL regions. Minor effect QRL were also observed, showing differential affects either on race-specific or multi-trait analyses and may play a role on durable horizontal resistance. These results contribute to a better understanding of the host-pathogen interaction and to breeding for enhancing resistance to Colletotrichum lindemuthianum in common bean.  相似文献   

3.
This study examined the effect of alcohol on two apnea reflexes considered to be protective mechanisms through which animals and humans preserve vital functions while they are submerged in water. The laryngeal chemoreflex and the trigeminal diving reflex were studied in unanesthetized 1- to 3-wk-old lambs. Reflex stimulation resulted in reduced ventilation or apnea, bradycardia, hypertension, and blood flow redistribution in the dive pattern. After alcohol, reflex stimulation resulted in increased apnea response, preserved blood flow redistribution, but less hypertension. The onset of regular breathing following laryngeal water stimulation was significantly delayed, after alcohol, and mechanical ventilation was used in three lambs to terminate the prolonged poststimulus apnea. Airway occlusion pressure, an index of neuromuscular inspiratory drive, decreased significantly after alcohol. The study demonstrates a potent effect of alcohol on apnea reflex responses. The effect of alcohol on respiratory drive and on the apnea reflex response should be considered when humans ingest alcohol, in particular by those participating in water sports.  相似文献   

4.
Comparative-evolutional research of diving response showed that mechanisms of its expression had much in common in humans and in animals. Firstly, it involves a reflex bradycardia, vasoconstriction of peripheral vessels, and blood flow centralization. But, unlike animals whose diving response has some typical species peculiarities, human diving response is rather diverse. Four types of cardiovascular system response to face submersion were revealed: over-reactive, reactive, paradoxical, and nonreactive. These types were chosen according to the bradycardia character. It is also supposed that the occurrence of individual maximal R--R-interval, while serving as a signal to apnea stopping, is among the reasons of apnea activity limitation.  相似文献   

5.
Xu C  Zhang YM  Xu S 《Heredity》2005,94(1):119-128
Many disease resistance traits in plants have a polygenic background and the disease phenotypes are modified by environmental factors. As a consequence, the phenotypic values usually show a quantitative variation. The phenotypes of such disease traits, however, are often measured in discrete but ordered categories. These traits are called ordinal traits. In terms of disease resistance, they are called quantitative resistance traits, as opposed to qualitative resistance traits, and are controlled by the quantitative resistance loci (QRL). Classical quantitative trait locus mapping methods are not optimal for ordinal trait analysis because the assumption of normal distribution is violated. Methods for mapping binary trait loci are not suitable either because there are more than two categories in ordinal traits. We developed a maximum likelihood method to map these QRL. The method is implemented via a multicycle expectation-conditional-maximization (ECM) algorithm under the threshold model, where we can estimate both the QRL effects and the thresholds that link the disease liability and the categorical phenotype. The method is verified in simulated data under various combinations of the parameters. An SAS program is available to implement the multicycle ECM algorithm. The program can be downloaded from our website at www.statgen.ucr.edu.  相似文献   

6.
Failure to autoresuscitate from apnea has been suggested to play a role in sudden infant death. Little is known, however, about factors that influence the gasping and heart rate response to severe hypoxia that are fundamental to successful autoresuscitation in the newborn. The present experiments were carried out on 184 rat pups to investigate the influence of the parasympathetic nervous system, as well as adenosine, in mediating the profound bradycardia that occurs with the onset of hypoxic-induced primary apnea and in modulating hypoxic gasping. On days 1 to 2, days 5 to 6, and days 10 to 11 postpartum and following bilateral cervical vagotomy (VAG) or administration of a selective adenosine A(1) receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine; DPCPX), each pup was exposed to a single period of severe hypoxia produced by breathing an anoxic gas mixture (97% N(2)-3% CO(2)). Exposure to severe hypoxia resulted in an age-dependent decrease in heart rate (P < 0.001), accentuated with increasing postnatal age, that was attenuated in all age groups by DPCPX but not by VAG. Furthermore, DPCPX but not VAG decreased the time to last gasp but increased the total number of gasps in the 1- to 2-day-old and 5- to 6-day-old pups but not in the 10- to 11-day-old pups during exposure to severe hypoxia. Thus our data provide evidence that adenosine acting via adenosine A(1) receptors plays a role in modulating hypoxic gasping and in mediating the profound bradycardia that occurs coincident with hypoxic-induced primary apnea in rats during early postnatal life.  相似文献   

7.
The aim of this study was to ascertain the persistence of heart rate and blood pressure oscillations at the onset of voluntary apnea in humans and to assess the dependence of the fluctuations parameters on the chemoreceptor activity. In 24 young subjects (10 males, 14 females, mean age 20.4 years) heart rate (represented by its reciprocal value--RR-intervals), systolic blood pressure (SBP) and diastolic blood pressure (DBP) during controlled breathing (CB) of atmospheric air and oxygen followed by apnea were recorded continuously. The cosine functions were then fitted by nonlinear regression analysis to the heart rate, SBP and DBP oscillations during CB and at the onset of apnea. The parameters of oscillations were different during atmospheric air breathing compared to oxygen breathing. During oxygen breathing there was an increase of the RR-interval oscillations--relative bradycardia and enhanced magnitude of respiratory sinus arythmia. During apnea, the base level of the blood pressure oscillations was higher after breathing of atmospheric air compared to oxygen breathing. At least one cosine-like wave oscillation was present at the onset of apnea in the heart rate, SBP and DBP and the second wave was present in all assessed parameters in at least 70% of recordings. The oscillations in RR-intervals are, to some extent, independent of blood pressure oscillations. No significant gender differences were found either in the duration of breath holding or in the RR and SBP oscillations parameters.  相似文献   

8.
Hallmarks of the mammalian diving response are protective apnea and bradycardia. These cardiorespiratory adaptations can be mimicked by stimulation of the trigeminal ethmoidal nerve (EN5) and reflect oxygen-conserving mechanisms during breath-hold dives. Increasing drive from peripheral chemoreceptors during sustained dives was reported to enhance the diving bradycardia. The underlying neuronal mechanisms, however, are unknown. In the present study, expression and plasticity of EN5-bradycardias after paired stimulation of the EN5 and peripheral chemoreceptors was investigated in the in situ working heart-brain stem preparation. Paired stimulations enhanced significantly the bradycardic responses compared with EN5-evoked bradycardia using submaximal stimulation intensity. Alternating stimulations of the EN5 followed by paired stimulation of the EN5 and chemoreceptors (10 trials, 3-min interval) caused a progressive and significant potentiation of EN5-evoked diving bradycardia. In contrast, bradycardias during paired stimulation remained unchanged during repetitive stimulation. The progressive potentiation of EN5-bradycardias was significantly enhanced after microinjection of the 5-HT(3) receptor agonist (CPBG hydrochloride) into the nucleus tractus solitarii (NTS), while the 5-HT(3) receptor antagonist (zacopride hydrochloride) attenuated the progressive potentiation. These results suggest an integrative function of the NTS for the multimodal mediation of the diving response. The potentiation or training of a submaximal diving bradycardia requires peripheral chemoreceptor drive and involves neurotransmission via 5-HT(3) receptor within the NTS.  相似文献   

9.
The changes in heart rate induced by the stimulation of arterial chemoreceptors by apneic asphyxia and left atrial - intracarotid injections of sodium cyanide were investigated in anesthetized artificially ventilated and paralysed monkeys. Apneic asphyxia and sodium cyanide injection caused tachycardia, bradycardia, or both in monkeys paralysed with decamethonium bromide and tachycardia only, in monkeys paralysed with gallamine. In both groups, the tachycardia was abolished by prior administration of propranolol and the bradycardia, by atropine. Prior ventilation with 100% O2 abolished the heart rate responses produced by apnea. Recording of phrenic efferent activity showed that the neural discharge increased in response to apneic asphyxia and sodium cyanide injections. It remained so during the manifestation of tachycardia, bradycardia, or no change in heart rate, suggesting that even though "higher centres" may have an important influence in the heart rate responses elicited, central respiratory drive may not be the only mechanism. The present results show that in the nonhuman primate, arterial chemoreceptor stimulation elicits both cardioacceleratory and cardioinhibitory reflexes, and the net effect of their stimulation on heart rate depends upon the balance between these opposing mechanisms.  相似文献   

10.
The purpose of the current study was to characterize the response of the recurrent laryngeal nerve (RLN) to pulmonary C-fiber activation. Male rats of Wistar strain were anesthetized by urethane (1.2 g/kg, i.p.). Tracheostomy was performed. Catheter was inserted into the femoral artery and vein. Additional catheter was placed near the entrance of the right atrium via the right jugular vein. The animal was then paralyzed with gallamine triethiodide, ventilated and maintained at normocapnia in hyperoxia. Activities of the phrenic (PNA) and recurrent laryngeal nerves (RLNA) were monitored simultaneously. Two experimental protocols were completed. In the first experiment, various doses of capsaicin were delivered into the right atrium to activate pulmonary C-fibers with vagal intact. Low dose of capsaicin (1.25 microg/kg) produced apnea, a decrease in amplitude of PNA, an enhancement of RLNA during apnea and recovery from apnea, hypotension, and bradycardia. High dose of capsaicin (5 and 20 microg/kg) evoked the same tendency of response for both nerves and biphasic changes in blood pressure. Dose dependency was only seen in the period of apnea but not observable in nerve amplitudes. After bilateral vagotomy, low dose of capsaicin produced an increase in PNA without apnea, no significant change in RLNA, and hypertension. These results suggest that activation of vagal and nonvagal C-fibers could produce different reflex effects on cardiopulmonary functions. The reflex responses evoked by these two types of afferents might play defensive and protective roles in the airways and lungs.  相似文献   

11.
Defense against pests and pathogens is a fundamental process controlled by similar molecular mechanisms in all flowering plants. Using Arabidopsis thaliana as a model, steps of the signal transduction pathways that link pathogen recognition to defense activation have been identified and corresponding genes have been characterized. Defense signaling (DS) genes are functional candidates for controlling natural quantitative variation of resistance to plant pathogens. Nineteen Arabidopsis genes operating in defense signaling cascades were selected. Solanaceae EST (expressed sequence tag) databases were employed to identify the closest homologs of potato (Solanum tuberosum). Sixteen novel DS potato homologs were positioned on the molecular maps. Five DS homologs mapped close to known quantitative resistance loci (QRL) against the oomycete Phytophthora infestans causing late blight and the bacterium Erwinia carotovora subsp. atroseptica causing blackleg of stems and tuber soft rot. The five genes are positional candidates for QRL and are highly sequence related to Arabidopsis genes AtSGT1b, AtPAD4, and AtAOS. Full-length complementary DNA and genomic sequences were obtained for potato genes StSGT1, StPAD4, and StEDS1, the latter being a putative interactor of StPAD4. Our results form the basis for further studies on the contributions of these candidate genes to natural variation of potato disease resistance.  相似文献   

12.
Twelve subjects without and ten subjects with diving experience performed short diving-related interventions. After labeling of erythrocytes, scintigraphic measurements were continuously performed during these interventions. All interventions elicited a graduated and reproducible splenic contraction, depending on the type, severity, and duration of the interventions. The splenic contraction varied between approximately 10% for "apnea" (breath holding for 30 s) and "cold clothes" (cold and wet clothes applied on the face with no breath holding for 30 s) and approximately 30-40% for "simulated diving" (simulated breath-hold diving for 30 s), "maximal apnea" (breath holding for maximal duration), and "maximal simulated diving" (simulated breath-hold diving for maximal duration). The strongest interventions (simulated diving, maximal apnea, and maximal simulated diving) elicited modest but significant increases in hemoglobin concentration (0.1-0.3 mmol/l) and hematocrit (0.3-1%). By an indirect method, the splenic venous hematocrit was calculated to 79%. No major differences were observed between the two groups. The splenic contraction should, therefore, be included in the diving response on equal terms with bradycardia, decreased peripheral blood flow, and increased blood pressure.  相似文献   

13.
Cardio-respiratory reflex effects of an exogenous serotonin challenge are suggested to be modulated by activation of the peripheral 5HT2 and 5HT3 receptors. In the present experiments the blocking effects of serotoninergic active drugs: ketanserin and tropanserin (MDL 72222) were studied in six pentobarbitone-chloralose anaesthetized cats. Bolus injection of serotonin (0.05 mg.kg(-1)) into the right femoral vein evoked prompt apnea, hypotension followed by tachypnoeic breathing. Pre-treatment with ketanserin (0.1 mg.kg(-1)), 5HT2 receptor antagonist, shortened the duration of post-serotonin apnea (P < 0.05), but had no effect on the pattern of post-apnoeic breathing. 5HT3 receptor blockade with the selective antagonist MDL 72222 (0.2 mg.kg(-1)) totally eliminated respiratory response to serotonin. In breaths that followed post-serotonin apnea, peak amplitude of the integrated phrenic signal was reduced (P < 0.001), unbiased by ketanserin blockade, and remained at the baseline level in MDL treated rats. Serotonin-induced hypotension was unaffected by the blockade of 5HT2 receptors. Inactivation of 5HT3 receptors with MDL attenuated the fall in blood pressure (P < 0.05). This data suggests that the squeal of serotonin-induced pulmonary chemoreflex, i.e. respiratory arrest, post-apnoeic pattern of breathing, bradycardia, and partially hypotension are mediated by 5HT3 receptors.  相似文献   

14.
The present study was undertaken to determine the afferent and efferent pathways involved in the phenyldiguanide (PDG)-induced reflex response in rats. Intravenous (iv) injection of PDG (10 microg/kg), produced hypotension, bradycardia and apnea over a period of time. Bilateral vagotomy abolished the PDG-induced reflex changes. Atropine (2 mg/kg; iv) blocked only the bradycardiac response produced by PDG, while prazosin (0.5 mg/kg; iv) blocked the hypotensive response, and bilateral vagotomy in these animals abolished the apneic response. In separate series of experiments, intrapericardial injection of lignocaine abolished the hypotensive and bradycardiac responses evoked by PDG in artificially ventilated rats. The results reveal that the PDG-induced reflex is mediated through vagal afferents originating from the heart and efferents involve three different pathways. The bradycardiac response was through the muscarinic receptors, the hypotension is mediated through alpha1 adrenoceptors and the apnea presumably through the spinal motoneurones supplying the respiratory muscles.  相似文献   

15.
Schertel et al. (J. Appl. Physiol. 61: 1237-1240, 1984) reported that pulmonary C fibers initiate the prompt apnea followed by rapid shallow breathing evoked by pulmonary arterial injections of capsaicin. However, doubt has remained as to whether these changes in breathing pattern are induced exclusively by direct stimulation of pulmonary C fibers or whether secondary stimulation of slowly adapting pulmonary stretch receptors by capsaicin-induced reflex bronchoconstriction also contributes to the response. To determine the contribution of this secondary mechanism to changes in breathing pattern, we evoked the pulmonary chemoreflex in spontaneously breathing dogs before and after blockade of muscarinic receptors with atropine. Right atrial injections of capsaicin before the administration of atropine induced a classical pulmonary chemoreflex, i.e., apnea, hypotension, and bradycardia followed by rapid shallow breathing and bronchoconstriction. After atropine, all components of the pulmonary chemoreflex induced by right atrial injections of capsaicin remained intact except bronchoconstriction. However, the absolute magnitude of the change in each component of the reflex except apnea was significantly attenuated. We conclude that the classic pulmonary chemoreflex is a complex phenomenon initiated primarily by stimulation of pulmonary C fibers but significantly influenced by secondary stimulation of slowly adapting pulmonary stretch receptors.  相似文献   

16.
Chloroplast development requires the coordinated action of various proteins, many of which remain to be identified. Here, we report two novel genes, Mesophyll-cell RNAi Library line 7 (MRL7) and MRL7-Like (MRL7-L), that are involved in this process. An Arabidopsis knock-down transgenic plant (MRL7-RNAi) with delayed-greening phenotype was isolated from an RNA interference (RNAi) transformant library. Cotyledons and young leaves of MRL7-RNAi were pale in seedlings and gradually greened as the plant matured, while a knock-out in the MRL7 gene was seedling lethal. The MRL7 protein was shown to co-localize with a marker protein for nucleoids in chloroplasts, indicative of a role for the protein in chloroplast nucleic acid metabolism. Accordingly, chloroplast development was arrested upon loss of MRL7 function and the expression of plastid-encoded genes transcribed by plastid-encoded RNA polymerase (PEP) was significantly reduced in MRL7 knock-down and knock-out plants. A paralog of MRL7 (MRL7-L) was identified in the Arabidopsis genome. Both MRL7 and MRL7-L are only found in land plants and encode previously uncharacterized proteins without any known conserved domain. Like MRL7, knock-down of MRL7-L also resulted in a virescent phenotype, and a similar effect on plastid gene expression. However, the MRL7-L protein was localized to the chloroplast stroma. Taken together, our data indicate that the two paralogous proteins MRL7 and MRL7-L have essential but distinct roles during early chloroplast development and are involved in regulation of plastid gene expression.  相似文献   

17.
We have found that the stimulation of the mucosa of the rhinopharynx elicits apnea and bradycardia in the duck. This appears to be the most important area involved in the production of diving responses. The laryngeal mucosa and other areas, as the external nares, were found to be of lesser relevance. We have also observed that visual and thermal stimuli may participate in the elicitation of the responses to submersion.  相似文献   

18.
Lee, Lu-Yuan, Robert F. Morton, and Jan M. Lundberg.Pulmonary chemoreflexes elicited by intravenous injection oflactic acid in anesthetized rats. J. Appl.Physiol. 81(6): 2349-2357, 1996.Experiments werecarried out to characterize the cardiorespiratory reflex responses tointravenous injection of lactic acid and to determine the involvementof vagal bronchopulmonary C-fiber afferents in eliciting theseresponses in anesthetized rats. Bolus injection of lactic acid (0.2 mmol/kg iv) immediately elicited apnea, bradycardia, and hypotension,which were then followed by a sustained hyperpnea. The immediate apneicand bradycardiac responses to lactic acid were completely abolished bybilateral vagotomy and were absent when the same dose of lactic acidwas injected into the left ventricle. The subsequent hyperpneicresponse was substantially attenuated by denervation of carotid bodychemoreceptors. After a perineural capsaicin treatment of both vagusnerves to block the conduction of C fibers, lactic acid no longerevoked the immediate apnea and bradycardia, whereas the hyperpneicresponse became more pronounced and sustained, presumably because ofthe removal of the inhibitory effect on breathing mediated by pulmonaryC-fiber activation. Single-unit electrophysiological recording showedthat intravenous injection of lactic acid consistently evoked an abruptand intense burst of discharge from the vagal C-fiber afferent endingsin the lungs. In conclusion, the cardiorespiratory depressor responses induced by lactic acid are predominantly elicited by activation ofvagal pulmonary C fibers.

  相似文献   

19.
The transfer of lpr BM stem cells into lethally irradiated non-lpr recipients (including the congenic MRL/+ differing only at the lpr locus) causes GVHD characterized by a wasting syndrome. In this study we investigated the interaction between the autoimmune (lpr) and normal (A-Thy) B, T, and RBC cell lineages in two types of radiation chimeras: MRL/lpr plus A-Thy----(MRL/lpr X A-Thy)F1 and MRL/+ plus A-Thy----(MRL/lpr X A-Thy)F1. Analysis of B cell repopulation by competitive RIA of serum Igh-1 allotype showed that both the MRL and the A-Thy donor cells initially engrafted. However, by 2 to 4 mo post-transplantation the normal A-Thy allotype was barely detectable (reduced greater than 2 orders of magnitude), whereas the autoimmune MRL/lpr allotype persisted at normal levels. Similarly, investigation of the donor origin of peripheral blood T cells by two-color flow cytometry showed that by 8 mo post-transplantation normal A-Thy T cells had been eliminated and only MRL/lpr T cells were present in the circulation. In contrast, erythrocytes from both the MRL/lpr and A-Thy donor strains successfully engrafted the F1 recipients and persisted until the termination of the study. Control chimeras transplanted with a mixture of MRL/+ plus A-Thy BM were stably engrafted with both donor strains in both the erythroid and lymphoid populations. Additional experiments in which either B6/lpr or MRL/lpr (and B6/+ or MRL/+ control) BM cells were transferred into (MRL/lpr X B6/+)F1 and (MRL/lpr X B6/lpr)F1 recipients demonstrated that the development of GVHD was not simply due to increased alloreactivity by the lpr donor cells. In these chimeras only the recipients heterozygous (but not homozygous) for the lpr gene developed lpr-GVHD, although both types of recipients had identical genotypes except at the lpr locus.  相似文献   

20.
The effects of adaptation to cold-and-hypoxic exposure on the cardiovascular system, lipid peroxidation and concentrations of adaptogenesis involved hormones were studied in male students. The two weeks cold- and hypoxic training was shown to be accompanied by a significant increase of apnea duration, reduced velocity of bradycardia development and a more rapid ECG post-cold and- hypoxic exposure normalization, as well as by inhibition of activation of adrenal cortex and thyroid gland after stress of different nature. The changes of the character of influences between the indices under study, were demonstrated. The correlation analysis showed an increase of the human's adaptive potential and a decrease of its dependence on the adrenal cortex hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号