首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
In this study, we examined how IL-8 induces leukocyte migration on major beta1 integrin ligands derived from the extracellular matrix protein fibronectin. We assessed individual contributions of signaling by IL-8 receptors by transfection of CXCR1 and CXCR2 into rat basophilic leukemia (RBL) cells and human monocytic THP-1 cells. CXCR1 expressing cells migrated on the fibronectin ligands for alpha4beta1 and alpha5beta1 integrins in response to IL-8, whereas CXCR2 expressing cells did not. RBL cells expressing the chimeric CXCR1 receptor containing the cytoplasmic tail of CXCR2 had greatly blunted migration, while cells expressing the CXCR2 chimera with the tail of CXCR1 had augmented migration. Last, inhibitors of p38 and JNK MAP kinases blocked IL-8-induced migration in CXCR1+ cells. We conclude that IL-8 stimulated beta1 integrin-mediated leukocyte migration on fibronectin through CXCR1 is dependent on the C-terminal cytoplasmic domain of CXCR1 and subsequent p38 and JNK MAPK signaling.  相似文献   

2.
CXC chemokine receptor 4 expression and function in human astroglioma cells   总被引:7,自引:0,他引:7  
Chemokines constitute a superfamily of proteins that function as chemoattractants and activators of leukocytes. Astrocytes, the major glial cell type in the CNS, are a source of chemokines within the diseased brain. Specifically, we have shown that primary human astrocytes and human astroglioma cell lines produce the CXC chemokines IFN-gamma-inducible protein-10 and IL-8 and the CC chemokines monocyte chemoattractant protein-1 and RANTES in response to stimuli such as TNF-alpha, IL-1beta, and IFN-gamma. In this study, we investigated chemokine receptor expression and function on human astroglioma cells. Enhancement of CXC chemokine receptor 4 (CXCR4) mRNA expression was observed upon treatment with the cytokines TNF-alpha and IL-1beta. The peak of CXCR4 expression in response to TNF-alpha and IL-1beta was 8 and 4 h, respectively. CXCR4 protein expression was also enhanced upon treatment with TNF-alpha and IL-1beta (2- to 3-fold). To study the functional relevance of CXCR4 expression, stable astroglioma transfectants expressing high levels of CXCR4 were generated. Stimulation of cells with the ligand for CXCR4, stromal cell-derived factor-1alpha (SDF-1alpha), resulted in an elevation in intracellular Ca(2+) concentration and activation of the mitogen-activated protein kinase cascade, specifically, extracellular signal-regulated kinase 2 (ERK2) mitogen-activated protein kinase. Of most interest, SDF-1alpha treatment induced expression of the chemokines monocyte chemoattractant protein-1, IL-8, and IFN-gamma-inducible protein-10. SDF-1alpha-induced chemokine expression was abrogated upon inclusion of U0126, a pharmacological inhibitor of ERK1/2, indicating that the ERK signaling cascade is involved in this response. Collectively, these data suggest that CXCR4-mediated signaling pathways in astroglioma cells may be another mechanism for these cells to express chemokines involved in angiogenesis and inflammation.  相似文献   

3.
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.  相似文献   

4.
We have previously found that bronchial epithelial cells express CCR3 whose signaling elicits mitogen-activated protein (MAP) kinase activation and cytokine production. Several investigators have focused on the signaling crosstalk between G protein-coupled receptors (GPCRs) and epidermal growth factor receptor (EGFR) in cancer cells. In this study, we investigated the role of EGFR in CCR3 signaling in the bronchial epithelial cell line NCI-H292. Eotaxin (1-100 nM) induced dose-dependent tyrosine phosphorylation of EGFR in NCI-H292 cells. Pretreatment of the cells with the EGFR inhibitor (AG1478) significantly inhibited the MAP kinase phosphorylation induced by eotaxin. Eotaxin stimulated IL-8 production, which was inhibited by AG1478. The transactivation of EGFR through CCR3 is a critical pathway that elicits MAP kinase activation and cytokine production in bronchial epithelial cells. The delineation of the signaling pathway of chemokines will help to develop a new therapeutic strategy to allergic diseases including bronchial asthma.  相似文献   

5.
The basis for the angiogenic effects of CXC chemokines such as interleukin 8 (IL-8) and for angiostatic chemokines such as interferon-inducible protein 10 (IP-10) has been difficult to assess. We recently reported, based on an RNase protection assay, that human umbilical vein endothelial cells (HUVECs) did not express detectable mRNA for the IL-8 receptors CXCR1 and CXCR2. This raised the possibility of heterogeneity of receptor expression by different endothelial cell (ECs) types. Since systemic angiogenesis induced by IL-8 would more likely involve microvessel ECs, we investigated CXC receptor expression on human microvascular dermal endothelial cells (HMECs). By confocal microscopy and immunofluorescence we observed that HMECs consistently expressed high levels of CXCR1 and CXCR4 (mean fluorescence intensity of 261+/-22.1 and 306.2+/-19, respectively) and intermediate levels of CXCR3 and CXCR2 (173.9+/-30. 2 and 156+/-30.9, respectively). In contrast, only a small proportion of HUVEC preparations expressed low levels of CXCR1, -2, and -3 (66+/-19.9; 49+/-15, and 81.4+/-17.9, respectively). However, both HMECs and HUVECs expressed equal levels of CXCR4. As expected, HMECs had more potent chemotactic responses to IL-8 than HUVECs, and this was correlated with the levels of IL-8 receptors on the ECs. Antibodies to CXCR1 and CXCR2 each had inhibitory effects on chemotaxis of HMECs to IL-8, indicating that both IL-8 receptors contributed to the migratory response of these cells toward IL-8. Assessment of the functional capacity of CXCR3 unexpectedly revealed that HMECs migrated in response to relatively higher concentrations (100-500 ng/ml) of each of the 'angiostatic' chemokines IP-10, ITAC, and MIG. Despite this, the 'angiostatic' chemokines inhibited the chemotactic response of HMECs to IL-8. IL-8 and SDF-1alpha but not IP-10 induced calcium mobilization in adherent ECs, suggesting that signaling events associated with calcium mobilization are separable from those required for chemotaxis. Taken together, our data indicated that functional differences among EC types is dependent on the level of the expression of CXC chemokine receptors. Whether this heterogeneity in receptor expression by ECs reflects distinct differentiation pathways remains to be established.  相似文献   

6.
Infection with human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma (KS)-associated herpesvirus, is necessary for the development of KS. The HHV-8 lytic-phase gene ORF74 is related to G protein-coupled receptors, particularly interleukin-8 (IL-8) receptors. ORF74 activates the inositol phosphate/phospholipase C pathway and the downstream mitogen-activated protein kinases, JNK/SAPK and p38. We show here that ORF74 also activates NF-kappaB independent of ligand when expressed in KS-derived HHV-8-negative endothelial cells or primary vascular endothelial cells. NF-kappaB activation was enhanced by the chemokine GROalpha, but not by IL-8. Mutation of Val to Asp in the ORF74 second cytoplasmic loop did not affect ligand-independent signaling activity, but it greatly increased the response to GROalpha. ORF74 upregulated the expression of NF-kappaB-dependent inflammatory cytokines (RANTES, IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor) and adhesion molecules (VCAM-1, ICAM-1, and E-selectin). Supernatants from transfected KS cells activated NF-kappaB signaling in untransfected cells and elicited the chemotaxis of monocytoid and T-lymphoid cells. Expression of ORF74 conferred on primary endothelial cells a morphology that was strikingly similar to that of spindle cells present in KS lesions. Taken together, these data, demonstrating that ORF74 activates NF-kappaB and induces the expression of proangiogenic and proinflammatory factors, suggest that expression of ORF74 in a minority of cells in KS lesions could influence uninfected cells or latently infected cells via autocrine and paracrine mechanisms, thereby contributing to KS pathogenesis.  相似文献   

7.
We have shown recently that interleukin (IL)-2 activates the mitogen-activated protein (MAP) kinase family members p38 (HOG1/stress-activated protein kinase II) and p54 (c-Jun N-terminal kinase/stress-activated protein kinase I). Furthermore, the p38 MAP kinase inhibitor SB203580 inhibited IL-2-driven T cell proliferation, suggesting that p38 MAP kinase might be involved in mediating proliferative signals. In this study, using transfected BA/F3 cell lines, it is shown that both the acidic domain and the membrane-proximal serine-rich region of the IL-2Rbeta chain are required for p38 and p54 MAP kinase activation and that, as for p42/44 MAP kinase, this activation requires the Tyr338 residue of the acidic domain, the binding site for Shc. It is well established that the acidic domain of the IL-2Rbeta chain is dispensable for IL-2-driven proliferation, and thus our observations suggest that neither p38 nor p54 MAP kinase activation is required for IL-2-driven proliferation of BA/F3 cells. In addition, the tetravalent guanylhydrazone inhibitor of proinflammatory cytokine production, CNI-1493, can block the activation of p54 and p38 MAP kinases by IL-2 but has no effect on IL-2-driven proliferation of BA/F3 cells, activated primary T cells, or a cytotoxic T cell line. Furthermore, our observations provide evidence for the existence of an additional, unknown target of the p38 MAP kinase inhibitor SB203580, the activation of which is essential for mitogenic signaling by IL-2.  相似文献   

8.
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.  相似文献   

9.
AIDS-associated Kaposi's sarcoma (KS) is a cytokine-mediated tumor, at least in the early stages of this disease; however, there is at present no definitive consensus regarding the exact role of intracellular signaling pathways involved in growth of KS cells. We found that KS cell growth factors oncostatin M, sIL-6R/IL-6, TNFalpha, and IL-1beta all activate ERK1/2, and selective blockage of this kinase by PD98059 resulted in a profound inhibition of the cytokine-induced KS cell growth. Concurrently with activation of ERK1/2, these growth factors phosphorylated and activated p38MAPK. The selective inhibition of p38MAPK by SB203580 prominently enhanced the cytokine-induced proliferation of KS cells, thereby indicating that p38MAPK has a negative feedback on mitogenic signals. As these KS cell growth factors lead to simultaneous activation of ERK1/2 and p38MAPK signaling pathways, the concerted effects of these kinase activities may well determine the intensity of cellular proliferative responses to these growth factors.  相似文献   

10.
Cxc chemokine receptor expression on human endothelial cells.   总被引:18,自引:0,他引:18  
C Murdoch  P N Monk  A Finn 《Cytokine》1999,11(9):704-712
CXC chemokines play a important role in the process of leukocyte recruitment and activation at sites of inflammation. However, recent evidence suggests that these molecules can also regulate endothelial cell functions such as migration, angiogenesis and proliferation. In this study we have investigated CXC chemokine receptor expression in both primary cultures of human umbilical vein endothelial cells (HUVEC) and the spontaneously transformed HUVEC cell line, ECV304. We found that both cell types express mRNA for chemokine receptors CXCR1, CXCR2 and CXCR4, but not CXCR3. Flow cytometric analysis revealed low levels of CXCR1 but higher levels of CXCR4 cell surface expression. HUVECs responded to SDF-1alpha with a rapid and robust calcium flux, however no calcium flux was seen with either IL-8 or Gro-alpha. HUVECs and ECV304 cells did not proliferate in response to CXC chemokines, although ECV304 cells did migrate towards SDF-1alpha and IL-8. These data demonstrate that HUVECs and the endothelial cell line, ECV304 express functional CXC chemokine receptors.  相似文献   

11.
Retinal pigment epithelial (RPE) cells form part of the blood-retina barrier and have recently been shown to produce various chemokines in response to proinflammatory cytokines. As the scope of chemokine action has been shown to extend beyond the regulation of leukocyte migration, we have investigated the expression of chemokine receptors on RPE cells to determine whether they could be a target for chemokine signaling. RT-PCR analysis indicated that the predominant receptor expressed on RPE cells was CXCR4. The level of CXCR4 mRNA expression, but not cell surface expression, increased on stimulation with IL-1beta or TNF-alpha. CXCR4 protein could be detected on the surface of 16% of the RPE cells using flow cytometry. Calcium mobilization in response to the CXCR4 ligand stromal cell-derived factor 1alpha (SDF-1alpha) indicated that the CXCR4 receptors were functional. Incubation with SDF-1alpha resulted in secretion of monocyte chemoattractant protein-1, IL-8, and growth-related oncogene alpha. RPE cells also migrated in response to SDF-1alpha. As SDF-1alpha expression by RPE cells was detected constitutively, we postulate that SDF-1-CXCR4 interactions may modulate the affects of chronic inflammation and subretinal neovascularization at the RPE site of the blood-retina barrier.  相似文献   

12.
Chemokine receptors are essential for triggering chemotaxis to immune cells; however, a number of them can also mediate death when engaged by nonchemokine ligands. When the chemokine receptor CXCR4 is engaged by stromal cell-derived factor (SDF1)alpha, it triggers cells to chemotax, and in some cell types such as neurons, causes cell death. To elucidate this dual and opposing receptor function, we have investigated whether CXCR4 activation by its chemokine SDF1alpha could lead to the simultaneous activation of both anti- and proapoptotic signaling pathways; the balance ultimately influencing cell survival. CXCR4 activation in CD4 T cells by SDF1alpha led to the activation of the prosurvival second messengers, Akt and extracellular signal-regulated protein kinase. Selective inhibition of each signal demonstrated that extracellular signal-regulated protein kinase is essential for mediating SDF1alpha-triggered chemotaxis but does not confer an antiapoptotic state. In contrast, Akt activation through CXCR4 by SDF1alpha interactions is necessary to confer resistance to apoptosis. The proapoptotic signaling pathway triggered by SDF1alpha-CXCR4 interaction involves the G(ialpha) protein-independent activation of the proapoptotic MAPK (p38). Furthermore, other chemokines and chemokine receptors also signal chemotaxis and proapoptotic effects via similar pathways. Thus, G(ialpha) protein-coupled chemokine receptors can function as death prone receptors and the balance between the above signaling pathways will ultimately mandate the fate of the activated cell.  相似文献   

13.
HHV-8-GPCR is a chemokine-like receptor encoded by KSHV, the etiologic agent of KS. HHV-8-GPCR is constitutively active. Although it is homologous to mammalian CXCR2, it binds CXC and CC chemokines. Structure-function analysis showed that chemokines bind primarily to the amino terminus whereas signaling occurs in the absence of: the amino terminus, which is, therefore, not a tethered agonist. In in vitro systems, HHV-8-GPCR signals via multiple transduction pathways including, activation of phospholipase C and PKC, inhibition of adenylyl cyclase, activation of nuclear factor-κB; activation PI 3-kinase, p42/44 MAPK and Akt/PKB, and activation of JNK/SAPK, p38 MAPK and RAFTK. HHV-8-GPCR is important in the HHV-8 life cycle because HHV-8-GPCR-deficient viruses do not replicate in response to chemokines and exhibit, less efficient reactivation from latency. Although the role of HHV-8-GPCR in the pathogenesis of KS has not been defined, expression of HHV-8-GPCR resulted in the development of angioproliferative, KS-like tumors in transgenic mice. As endothelial cells may be targets of HHV-8 infection, HHV-8-GPCR has been studied in endothelial cells in vitro in which it affects cell adhesion and migration, increases cell survival, and stimulates secretion of proinflammatory cytokines and proangiogenic factors. Based on these findings and the observation that HHV-8-GPCR is expressed in only a few endothelial- like "spindle cells" within KS lesions, we propose that HHV-8-GPCR is involved in KS pathogenesis by stimulating secretion of proinflammatory/proangiogenic factors that act in a paracrine fashion to cause tumorigenesis.  相似文献   

14.
15.
16.
Studies of human neutrophil IL-8 receptors, CXCR1 and CXCR2, have shown that the two receptors are differentially regulated by ELR+-CXC chemokines, that they differ functionally and may have diverse roles in mediating the inflammatory process. To elucidate the role of CXCR1 and CXCR2 in inflammation and to delineate the basis for the divergent regulation of these receptors by IL-8 and NAP-2, we characterized the IL-8- and NAP-2-induced mechanisms regulating the expression of each receptor, focusing on receptor internalization and recycling. Using HEK 293 cell transfectants, IL-8 was shown to induce significantly higher levels of CXCR2 internalization than NAP-2. Moreover, although CXCR2 bound IL-8 and NAP-2 with similarly high affinity, IL-8 functionally competed with and displaced NAP-2, and prompted high levels of internalization, similar to those induced by IL-8 alone. In a system providing an identical cellular milieu for reliable comparisons between CXCR1 and CXCR2, we have shown that the mechanisms controlling the internalization of CXCR1 diverge from those regulating CXCR2 internalization. Whereas IL-8-induced internalization of CXCR1 was profoundly dependent on a region of the carboxyl terminus expressing six phosphorylation sites, internalization of CXCR2 was primarily regulated by a membrane proximal domain of the carboxyl terminus that does not express phosphorylation sites. Analysis of receptor re-expression on the plasma membrane indicated that at early time points following removal of free ligand and incubation of the cells at 37°C, receptor recycling accounted for recovery of CXCR1 and CXCR2 expression, whereas at later time points other processes may be involved in receptor re-expression. Phosphorylation-independent mechanisms were shown to direct both receptors to the recycling pathway. The differential control of CXCR1 vs CXCR2 internalization by IL-8 and NAP-2, as well as by phosphorylation-mediated mechanisms, suggests that a chemokine- and receptor-specific mode of regulation of internalization may contribute to the divergent activities of these receptors.  相似文献   

17.
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal and CXCR4-mediated leukocyte migration. Slit-2 was shown to be frequently inactivated in lung and breast cancers because of hypermethylation of its promoter region. Furthermore, the CXCR4/CXCL12 axis has been reported recently to be actively involved in breast cancer metastasis to target organs such as lymph nodes, lung, and bone. In this study, we sought to characterize the effect of Slit (=Slit-2) on the CXCL12/CXCR4-mediated metastatic properties of breast cancer cells. We demonstrate here that breast cancer cells and tissues derived from breast cancer patients express Robo 1 and 2 receptors. We also show that Slit treatment inhibits CXCL12/CXCR4-induced breast cancer cell chemotaxis, chemoinvasion, and adhesion, the fundamental components that promote metastasis. Slit had no significant effect on the CXCL12-induced internalization process of CXCR4. In addition, characterization of signaling events revealed that Slit inhibits CXCL12-induced tyrosine phosphorylation of focal adhesion components such as RAFTK/Pyk2 at residues 580 and 881, focal adhesion kinase at residue 576, and paxillin. We found that Slit also inhibits CXCL12-induced phosphatidylinositol 3-kinase, p44/42 MAP kinase, and metalloproteinase 2 and 9 activities. However, it showed no effect on JNK and p38 MAP kinase activities. To our knowledge, this is the first report to analyze in detail the effect of Slit on breast cancer cell motility as well as its effect on the critical components of the cancer cell chemotactic machinery. Studies of the Slit-Robo complex may foster new anti-chemotactic approaches to block cancer cell metastasis.  相似文献   

18.
19.
Interleukin (IL)-8 is a C-X-C chemokine that plays an important role in acute inflammation through its G protein-coupled receptors CXCR1 and CXCR2. In this study, we investigated the role of IL-8 as an autocrine regulator of IL-8 production and the signaling mechanisms involved in human peripheral blood mononuclear cells (MNCs). Sepharose-immobilized IL-8 stimulated a sevenfold increase in IL-8 production within 2 h. IL-8 induced the expression of its own message, and IL-8 biosynthesis was inhibited by cycloheximide and actinomycin D, indicating de novo RNA and protein synthesis. In contrast to MNCs, polymorphonuclear neutrophils did not respond to the immobilized IL-8 with IL-8 production despite cell surface expression of CXCR1 and CXCR2. Melanoma growth-stimulatory activity/growth-related protein-alpha (MGSA/GROalpha), which binds CXCR2 but not CXCR1, was unable to either stimulate IL-8 secretion in MNCs or desensitize these cells to respond to immobilized IL-8. The involvement of mitogen-activated protein kinase (MAPK) in IL-8-induced IL-8 biosynthesis was suggested by the ability of PD-98059, an inhibitor of MAPK kinase, to block this function. Furthermore, IL-8 induced a significant increase in extracellular signal-regulated kinase 2 phosphorylation, whereas MGSA/GROalpha was much less effective. These findings support the role of IL-8 as an autocrine regulator of IL-8 production and suggest that this function is mediated by CXCR1 through activation of MAPK.  相似文献   

20.
In patients with cystic fibrosis (CF) and asthma, elevated levels of interleukin-8 (IL-8) are found in the airways. IL-8 is a CXC chemokine that is a chemoattractant for neutrophils through CXCR1 and CXCR2 G protein-coupled receptors. We hypothesized that IL-8 acts directly on airway smooth muscle cells (ASMC) in a way that may contribute to the enhanced airway responsiveness and airway remodeling observed in CF and asthma. The aim of this study was to determine whether human ASMC (HASMC) express functional IL-8 receptors (CXCR1 and CXCR2) linked to cell contraction and migration. Experiments were conducted on cells harvested from human lung specimens. Real-time PCR and fluorescence-activated cell sorting analysis showed that HASMC expressed mRNA and protein for both CXCR1 and CXCR2. Intracellular Ca2+ concentration ([Ca2+]i) increased from 115 to 170 nM in response to IL-8 (100 nM) and decreased after inhibition of phospholipase C (PLC) with U-73122. On blocking the receptors with specific neutralizing antibodies, changes in [Ca2+]i were abrogated. IL-8 also contracted the HASMC, decreasing the length of cells by 15%, and induced a 2.5-fold increase in migration. These results indicate that HASMC constitutively express functional CXCR1 and CXCR2 that mediate IL-8-triggered Ca2+ release, contraction, and migration. These data suggest a potential role for IL-8 in causing abnormal airway structure and function in asthma and CF. chemokines; lung; signal transduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号