首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M A Dietze  P J Kulkosky 《Life sciences》1991,48(19):1837-1844
The methylxanthine caffeine and ethyl alcohol are widely used and powerful psychotropic drugs, but their interactions are not well understood. Bombesin is a brain-gut neuropeptide which is thought to function as a neurochemical factor in the inhibitory control of voluntary alcohol ingestion. We assessed the effects of combinations of intraperitoneal (i.p.) doses of caffeine (CAF, 0.1-50 mg/kg) and bombesin (BBS, 1-10 micrograms/kg) on 5% w/v ethanol solution and food intake in deprived rats. Deprived male and female Wistar rats received access to 5% ethanol or Purina chow for 30 minutes after i.p. injections. In single doses, CAF and BBS significantly decreased both ethanol and food consumption, at 50 mg/kg and 10 micrograms/kg, respectively. CAF and BBS combinations produced infra-additive, or less-than-expected inhibitory effects on ethanol intake, but simple additive inhibitory effects on food intake. This experimental evidence suggests a reciprocal blocking of effects of CAF and BBS on ethanol intake but not food intake. Caffeine, when interacting with bombesin, increases alcohol consumption beyond expected values. Caffeine could affect the operation of endogenous satiety signals for alcohol consumption.  相似文献   

2.
Although the most prominent acute and chronic effect of alcohol ingestion in man is alteration of brain function, metabolism of ethanol by human brain has not been documented. This study was designed to detect and localize a new family of nonoxidative ethanol metabolites, fatty acid ethyl esters, in human brain and characterize their synthetic pathways. Fatty acid ethyl ester synthase activity was present in 10 different locations in human brain, with gray matter containing more activity than white matter (0.53 nmol of ethyl oleate/mg of protein/h and 0.25 nmol of ethyl oleate/mg of protein/h, respectively). Two forms of this synthase, present in cytosol or loosely bound to membrane fractions, were isolated from human gray and white matter and then partially purified by ion-exchange chromatography. Both were active at low ethanol concentrations easily attained in vivo in man. Importantly, fatty acid ethyl esters were also detected in brains of individuals dying while intoxicated; only small amounts were present in control subjects at autopsy. Thus, alcohol metabolism in human brain has been documented for the first time by identifying both fatty acid ethyl esters and their synthases in this important target-organ of alcohol abuse.  相似文献   

3.
We studied the intensity of lipid peroxidation (LP) and the amount of a marker of astrocytes (glial fibrillary acidic protein, GFAP) in tissues of the rat brain under conditions of long-lasting consumption (12 weeks) of ethyl alcohol, as well as the protective effects of peroral administration of hydrated forms of fullerene ?60 (?60HyFn, FWS, fullerene water solutions). Consumption of ethanol resulted in a rise in the amount of molecular markers of oxidative stress (thiobarbiturate-active compounds) in the cerebral tissues. The level of the filamentous GFAP form in the hippocampus and cerebral cortex of alcoholized animals decreased significantly, which can be a result of death of the population of GFAP-imunnoreactive astrocytes in the brain. In the brain of rats after systematic consumption of both ethanol and an aqueous solution of hydrated fullerenes ?60, the amounts of products of lipid peroxidation and of the astroglial marker did not differ significantly from the respective indices in the control animals. Our data demonstrate the efficiency of hydrated fullerenes as pathogenetic therapeutic remedies for elimination of the negative effects of ethyl alcohol on the CNS.  相似文献   

4.
A high-performance liquid chromatographic technique for ethyl alcohol determination in body fluids is proposed. Ethyl alcohol is quantitatively converted into acetaldehyde-phenylhydrazone by oxidation in the presence of alcohol dehydrogenase, nicotinamide–adenine dinucleotide and phenylhydrazine. The derivative is suitable for reversed-phase liquid chromatography and ultraviolet detection at 276 nm. The limits of linearity, detection and quantification as well as accuracy and reproducibility were investigated in water, serum and whole blood. Analytical responses were linear within the 0.008 to 5 g/l range, and the limit of quantification was 0.02 g/l both in aqueous standard and in biological matrix assays. Mean analytical recovery of ethyl alcohol in blood serum averaged 98.2±4.2%, imprecision (CV%) at 0.80 g/l was 2.2%, and the limit of quantification was 0.02 g/l. Serum concentrations of persons that avoided alcoholic beverages for a week were less than the limit of quantification. Ethyl alcohol concentrations in serum and whole blood compared well with those obtained by headspace gas chromatography. This simple and reliable procedure, which was also used for a urine assay, could be suitable for validation of the screening procedures used to monitor ethanol abuse.  相似文献   

5.
The influence of consumption of increasing ethanol solutions of 5, 7.5 and 10%/99.5% (v/v), on total body mineral composition, but particularly the ethanol effect on the contents of Ca, P, Mg, Zn, Na and K, for eight weeks was studied in the adult rat. Both females and males voluntarily lower their liquid intake when daily ethanol ingestion is about 1.4 and 1.7 g, respectively. These ethyl ingestions introduce some modifications in male body composition, but not in females, with an increase in the relative water content and a decrease of the carcass dry substance. The latter would be the main reason for the decrease in male body content of Ca, P, Zn, Mg and K, at least from the 7.5% v/v solution. Ca, P and Zn seem to be the most modified elements. Likewise, there are negative influences regarding Na, but they are not clearly evidenced until ethanol consumption reaches 1.9 g per day. Female body weight did not undergo any change, under any tested experimental conditions or their body ashes suffer any deterioration.  相似文献   

6.
Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%–1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS.  相似文献   

7.
Epidemiological studies have shown an association between alcohol (ethanol) consumption and increased cancer risk. The effect of alcohol consumption on the levels and persistence of N(2)-ethylidene-2'-deoxyguanosine (N(2)-ethylidene-dG) formed by acetaldehyde, the oxidative metabolite of ethanol, in human leukocyte DNA was investigated. DNA was isolated from venous blood samples obtained from 30 male non-smoking individuals before consumption of alcohol (0h) and subsequently at 3-5h following the consumption of 150mL of vodka (containing 42% pure ethanol). Additional samples were collected 24h and 48h post-alcohol consumption. The levels of N(2)-ethyl-2'-deoxyguanosine (N(2)-ethyl-dG) in the DNA were determined following reduction of N(2)-ethylidene-dG with sodium cyanoborohydride using a liquid chromatography-tandem mass spectrometry selected reaction monitoring method. A slight time-dependent trend showing an increase and decrease in the levels of N(2)-ethyl-dG was observed following consumption of alcohol compared to time 0h, however, the differences were not statistically significant. The average levels of N(2)-ethyl-dG observed at 0h, 3-5h, 24h and 48h time points following ingestion of alcohol were 34.6±21.9, 35.1±21.0, 36.8±20.7 and 35.6±21.1 per 10(8) 2'-deoxynucleosides, respectively. In conclusion, alcohol consumption that could be encountered under social drinking conditions, does not significantly alter the levels of the acetaldehyde derived DNA adduct, N(2)-ethyl-dG in human leukocyte DNA from healthy individuals.  相似文献   

8.
The data available in literature concerning the induction of lipid peroxidation (LP) with chronic alcohol administration are systematized. LP can be considered as one of the main processes leading to cellular membrane damage. The cytotoxic activity is attributed not only to the free radicals but also to the final products of the lipid hydroperoxide decomposition, such as malonic dialdehyde and 4-hydroxyalkenals. Data about antioxidative defence enzymes (glutathione peroxidase and transferase, catalase superoxide dismutase) and less investigated protein factors which inhibit LP are summarized; particular attention is paid to changes in their activity during chronic alcoholization. Molecular mechanisms underlying the LP stimulation in the liver tissue against a background of ethanol ingestion are analyzed. New data are presented on the role of peroxisomes in the development of alcohol cardiomyopathy.  相似文献   

9.
The effect of daily oral administration of ethanol (2.5, 5, or 10% in drinking water for 8 wk), lead (10 mg/kg, po, once daily for 8 wk), or their combination on tissue trace-metal concentration and hematopoietic and hepatic biochemical indices was investigated in male rats. Ethanol (10%) ingestion enhanced the hepatic lipid peroxidation and decreased the calcium and magnesium content of blood and liver. Coexposure to lead and ethanol (5 and 10%) produced a more pronounced elevation of blood zinc protoporphyrin (ZPP) and hepatic lipid peroxidation. Combined lead-ethanol exposure also lowered the concentration of blood and hepatic magnesium and calcium and increased the amount of lead in the blood, liver, and brain compared to a group treated with lead alone. The results suggest that chronic alcohol ingestion results in calcium and magnesium loss. However, coexposure to lead and ethanol could result in more serious depletion of calcium and magnesium, and this could be the cause of suspected synergism between alcohol consumption and lead poisoning.  相似文献   

10.
The link between chronic alcohol consumption and cardiovascular injury including hypertension is well known. However, molecular mediators implicated with alcohol-induced elevation in blood pressure (BP) remain elusive. The aim of this study was to investigate the relationship of chronic ethanol-induced endothelial injury and elevation in BP with angiotensin II levels in rats. Male Fisher rats were divided into two groups of seven animals each and treated as follows: (1) Control (5% sucrose, orally) daily for 12 weeks and (2) ethanol (4 g kg−1, orally) daily for 12 weeks. The BP (systolic, diastolic, and mean) was recorded every week. The animals were anesthetized with pentobarbital after 12 weeks; blood and thoracic aorta were isolated and analyzed for aortic reactivity response, angiotensin II levels, and oxidative endothelial injury. The results show that the systolic, diastolic, and mean BP were significantly elevated 12 weeks after ethanol ingestion. The increased BP was related to elevated angiotensin II levels in the plasma and aorta of alcohol treated group compared to control. The aortic NADPH oxidase activity, ratio of oxidized to reduced glutathione (GSSG/GSH) and lipid peroxidation significantly increased, whereas nitric oxide (NO), endothelial NO synthase (eNOS), and vascular endothelial growth factor (VEGF) protein expressions were depressed in alcohol group compared to control. The phenylephrine-mediated vasoconstriction response was not altered, while acetylcholine-mediated vasorelaxation response was depressed in the aorta of ethanol treated rats compared to control. It is concluded that chronic ethanol ingestion induces hypertension which is correlated with elevated tissue angiotensin II levels, activation of NADPH oxidase activity causing endothelial injury, depletion of endothelial NO generating system, and impaired vascular relaxation in rats.  相似文献   

11.
Acute and chronic ethanol ingestion cause embryopathy similar to that of hyper- or hypovitaminosis A. Experimental data have suggested interaction between vitamin A and alcohol signaling pathways at the level of metabolic interference, which ultimately affects the concentration of retinoic acid (RA) in animals. The present study was set up to examine the possible effects of alcohol on cellular RA binding protein I (CRABP-I) expression during embryonic development by using transgenic mouse embryos and P19 embryonal carcinoma cells as experimental models. It was found that expression of the mouse CRABP-I gene was elevated in developing embryos at mid-gestation stages as a result of ethanol consumption by the mothers. Specific elevation of this gene was detected in the limb bud and the gut. In the P19 model, the CRABP-I gene was directly upregulated by ethanol, which was not blocked by a protein synthesis inhibitor. Furthermore, the regulation of the CRABP-I gene by ethanol was mediated by the 5' upstream regulatory region of the CRABP-I gene promoter. A potential interaction of vitamin A and ethanol at the level of CRABP-I gene expression is discussed.  相似文献   

12.
The relationship between alcohol consumption and glycoconjugate metabolism is complex and multidimensional. This review summarizes the advances in basic and clinical research on the molecular and cellular events involved in the metabolic effects of alcohol on glycoconjugates (glycoproteins, glycolipids, and proteoglycans). We summarize the action of ethanol, acetaldehyde, reactive oxygen species (ROS), nonoxidative metabolite of alcohol--fatty acid ethyl esters (FAEEs), and the ethanol-water competition mechanism, on glycoconjugate biosynthesis, modification, transport and secretion, as well as on elimination and catabolism processes. As the majority of changes in the cellular metabolism of glycoconjugates are generally ascribed to alterations in synthesis, transport, glycosylation and secretion, the degradation and elimination processes, of which the former occurs also in extracellular matrix, seem to be underappreciated. The pathomechanisms are additionally complicated by the fact that the effect of alcohol intoxication on the glycoconjugate metabolism depends not only on the duration of ethanol exposure, but also demonstrates dose- and regional-sensitivity. Further research is needed to bridge the gap in transdisciplinary research and enhance our understanding of alcohol- and glycoconjugate-related diseases.  相似文献   

13.
Oxidative pathways of alcohol metabolism such as alcohol dehydrogenase usually are not present in human blood and therefore clinical studies correlating ethanol metabolism with alcohol abuse syndromes have not been performed. To assess the activity of nonoxidative ethanol metabolism in blood, we assayed for the activity of fatty acid ethyl ester synthase, a pathway recently described as abundant in the human organs most commonly damaged by alcohol. Indeed, peripheral human leukocytes contain detectable fatty acid ethyl ester synthase activity: 1.2 X 10(6) leukocytes from 10 ml blood catalyze the synthesis of ethyl oleate at 1.4 nmol/4 hr. The reaction is linear with respect to cell number and expended time; Km oleate = 600 microM, Km ethanol = 600 mM. DEAE cellulose chromatography partially purifies synthase activity into a minor and major form (activity ratio = 10/1). Thus, gene products exist in human blood that recognize ethanol and whose biological activity is conveniently assayable for clinical investigations of alcohol metabolism and abuse.  相似文献   

14.
Kharchenko  N. K.  Synytsky  V. N.  Koval  Z. A. 《Neurophysiology》2002,34(5):366-372
We studied the contents of serotonin (5-HT) in a few brain structures (hypothalamus, midbrain, and neocortex) and in blood of rats with genetically determined preference of either ethanol solution or water as a liquid for drinking (groups preferring ethanol, PE, or preferring water, PW, respectively). Rats of the PE group differed from PW animals by significantly higher levels of 5-HT in the hypothalamus and blood. Peroral introduction of 4 g/kg ethanol into PE rats resulted in rapid (in not more than 15 min) sharp increases in the 5-HT content in the hypothalamus, neocortex, and blood, but 45 min after ethanol introduction the 5-HT contents in the hypothalamus, midbrain, neocortex, and blood noticeably dropped. It is suggested that within this time interval condensation of 5-HT with acetaldehyde (AcAdh, the first metabolite of ethanol oxidation) is intensified. This results in the production of -carbolines, analogs of morphine-like alkaloids, which are ligands of the opioid receptors. Under conditions of the development of alcohol addiction (free access of PE animals to the ethanol solution and water for several months), the content of 5-HT in the brain structures and blood increased in a parallel manner with an increase in the daily consumption of alcohol. Our findings are proof of the significant involvement of the serotoninergic system in the development of the euphoria state after single alcohol consumption and motivation for its consumption in the course of formation of alcohol addiction.  相似文献   

15.
1. Monoethyl phosphate was isolated from the liver of rats treated with large doses of ethanol. The (14)C- and (32)P-labelled products were obtained when [2-(14)C]ethanol and [(32)P]orthophosphate respectively were used as the radioactive precursors. 2. The isolated ethyl phosphate preparations were identified by their chemical properties, chromatographic behaviour and enzymic hydrolysis, which, for the (14)C-labelled substrate, resulted in a partial recovery of the administered [(14)C]ethanol. 3. The possibility of artifact formation of ethyl phosphate was excluded by suitable control experiments. 4. It is concluded that ethyl phosphate formed in vivo may be a product of phosphate-catalysed alcoholysis of various phosphate esters. The physiological significance of the possible substitution of water by ethanol in reactions catalysed by hydrolytic enzymes under conditions of acute body intoxication with the alcohol is emphasized.  相似文献   

16.
Abstract

This paper reviews animal studies of genetic differences in the consumption of alcohol. It deals with six areas: (1) field observations in nature; (2) selective breeding; (3) variation among inbred strains; (4) correlates of ethanol preference and avoidance; (5) consumption and sensitivity; and (6) a test of an ethanol intake control system. Because of space constraints it is selective rather than exhaustive. The results of experiments demonstrate that genes have a strong effect on alcohol consumption when animals are given a choice of liquids. Both preabsorptive and postabsorptive factors can modify intake. There are similarities in factors that affect alcohol consumption in animals and those believed to be operative in humans. Evidence for an ethanol intake control system is presented.  相似文献   

17.
18.
This review is focused on the different chromatographic strategies for blood alcohol determination which can be adopted for clinical and/or forensic purposes. Particular attention is paid to gas chromatography and to high-performance liquid chromatography. However, other analytical techniques in common use, such as chemical and enzymic methods, are also briefly presented, together with some, at present unusual or experimental, approaches, such as enzymic reactors and catalytic electrodes, which are suitable for application in column liquid chromatography. Finally, mention is made of the methods for the determination of acetaldehyde, the major ethanol metabolite, and of some proposed markers of chronic alcohol abuse, such as acetaldehyde—protein adducts and carbohydrate-deficient transferrin. In order to give the background of knowledge for the rational choice of an analytical strategy, an updated outline of ethanol metabolism and toxicology is presented, together with basic information for the interpretation of the results. Problems concerning blood sampling and storage are also discussed.  相似文献   

19.
One of the pathologic complications of exudative (i.e. wet-type) age-related macular degeneration (AMD) is choroidal neovascularization (CNV). The aim of this study was to investigate whether chronic and heavy alcohol consumption influenced the development of CNV in a rat model. The oxidative metabolism of alcohol is minimal or absent in the eye, so that ethanol is metabolized via a nonoxidative pathway to form fatty acid ethyl esters (FAEE). Fatty acid ethyl ester synthase (FAEES) was purified from the choroid of Brown Norway (BN) rats. The purified protein was 60 kDa in size and the antibody raised against this protein showed a single band on western blot. BN rats on a regular diet were fed alcohol for 10 weeks. Control rats were fed water with a regular diet and pair-fed control rats were fed regular diet, water and glucose. We found that FAEES activity was increased 4.0-fold in the choroid of alcohol-treated rats compared with controls. The amount of ethyl esters produced in the choroid of 10 week alcohol-fed rats was 7.4-fold more than rats fed alcohol for 1 week. The increased accumulation of ethyl esters was associated with a 3.0-fold increased expression of cyclin E and cyclin E/CDK2; however, the level of the cyclin kinase inhibitor, p27Kip, did not change. The increased accumulation of ethyl esters was also associated with 3.0-fold decreased expression of APN in the choroid. We also found that the size of CNV increased by 28% in alcohol-fed rats. Thus, our study showed that chronic, heavy alcohol intake was associated with both an increased accumulation of ethyl esters in the choroid and an exacerbation of the CNV induced by laser treatment. These results may provide insight into the link between heavy alcohol consumption and exudative AMD.  相似文献   

20.
A two-stage process consisting of two reactions steps with glycerin separation and ethanol/catalyst addition in each of them was optimized for ethyl esters production. The optimal reaction temperature was 55 °C. At an ethanol/oil molar ratio of 4.25:1 (25%v/v alcohol with respect to oil), a 99% conversion value was obtained with low ethanol consumption. In contrast to methoxide catalysts, sodium and potassium hydroxide catalysts severely complicate the purification since no phase separation took place under most conditions. With a total sodium methoxide concentration of 1.06 g catalyst/100 g oil, and adding 50% of the catalyst in each reaction step, biodiesel with a total glycerin content of 0.172% was obtained. The optimal conditions found in this study make it possible to use the same industrial facility to produce either methyl or ethyl esters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号