首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High performance liquid chromatographic (HPLC) methods were validated for the determination of aripiprazole (OPC-14597, Abilify) in rat plasma and brain. Separation was by Nova-pak phenyl column; flow rate, 1.0 ml/min; mobile phase, acetonitrile-methanol-20 mM sodium sulfate-acetic acid (27:25:48:1, v/v/v/v); UV detection at 254 nm. Reproducibility in plasma and brain showed excellent precision (within 7.8 and 10.6%) and accuracy (96.0-102.4% and 99.0-108.7%) with calibration curve ranges 10.0-2000 ng/ml and 30.0-6000 ng/g, respectively. Validated HPLC methods were successfully applied to pharmacokinetic study of aripiprazole in rats, demonstrating brain concentrations after oral administration five times higher than plasma concentrations.  相似文献   

2.
A simple and rapid high-performance thin-layer chromatographic (HPTLC) determination of 5-methoxypsoralen in serum is necessary for the therapeutic survey of patients treated with Puvatherapy (psoralen+UV A). The assay for this biological fluid involves an extraction with heptane-dichloromethane (4:1, v/v). The analytical method is linear from 50 to 250 ng/ml. This assay range is adequate for analysing human serum, as it corresponds to psoralen concentrations measured in serum from patients treated with psoralen and UV A against psoriasis and vitiligo. The limit of detection is 15 ng/ml. The coefficient of variation was less than 7%.  相似文献   

3.
A novel, precise, accurate and rapid isocratic reversed-phase high performance liquid chromatographic/ultraviolet (RP-HPLC/UV) method was developed, optimized and validated for simultaneous determination of rosuvastatin and atorvastatin in human serum using naproxen sodium as an internal standard. Effect of different experimental parameters and various particulate columns on the analysis of these analytes was evaluated. The method showed adequate separation for rosuvastatin and atorvastatin and best resolution was achieved with Brownlee analytical C18 column (150×4.6 mm, 5 μm) using methanol-water (68:32, v/v; pH adjusted to 3.0 with trifluoroacetic acid) as a mobile phase at a flow rate of 1.5 ml/min and wavelength of 241 nm. The calibration curves were linear over the concentration ranges of 2.0-256 ng/ml for rosuvastatin and 3.0-384 ng/ml for atorvastatin. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) for rosuvastatin were 0.6 and 2.0 ng/ml while for atorvastatin were 1.0 and 3.0ng/ml, respectively. All the analytes were separated in less than 7.0 min. The proposed method could be applied for routine laboratory analysis of rosuvastatin and atorvastatin in human serum samples, pharmaceutical formulations, drug-drug interaction studies and pharmacokinetics studies.  相似文献   

4.
A reversed-phase HPLC method for the quantitative determination of total topotecan in human whole blood and unwashed erythrocytes has been developed and validated in terms of sensitivity, specificity, precision and accuracy. Linear calibration curves were constructed in the range of 0.20 to 50.0 ng/ml. The sample pre-treatment for whole blood involved a two-step extraction with methanol and perchloric acid. Prior to extraction, erythrocytes were separated from other blood components by centrifugation in MESED instruments. Separations were achieved on an Inertsil ODS-80A analytical column (150x4.6 mm, 5 microm particle size), eluted at 50 degrees C and a flow-rate of 1.00 ml/min, with a mixture of 100 mM ammonium acetate (pH 6.0)-tetrahydrofuran (94.6:5.4, v/v). Fluorescence detection was performed using excitation and emission wavelengths of 381 and 525 nm, respectively. With the applied method, 80% of topotecan was extracted out of whole blood. The lower limit of quantitation in whole blood was established at 0.20 ng/ml with within-run and between-run precisions, respectively, ranging from 1.7 to 9.3% and 1.5-6.1%, while the accuracy ranged from 100 to 113%. The described method will be used in clinical studies to explore the role of erythrocytes in the overall kinetic behavior of topotecan.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) detection was developed and validated for the quantification of 6-deoxy-6-demethyl-4-dedimethylamino-tetracycline (COL-3), a matrix metalloproteinase (MMPs) inhibitor, in rat serum. This simple, sensitive, rapid and reproducible assay involved a preliminary serum deproteinization by adding a mixture of acetonitrile-methanol-0.5 M oxalic acid (70:20:10 (v/v)), as the combined precipitant and metal blocking agent, into serum samples (2:1 (v/v)). An aliquot (20 microl) of the supernatant was injected into the HPLC system linked to a Waters XTerra RP(18) column (150 mm x 4.6 mm i.d., particle size 5 microm). The compound was eluted by a mixture of acetonitrile-methanol-0.01 M oxalic acid (40:10:50 (v/v), pH 2.00), as the mobile phase, and detected at the wavelength of 350 nm. The total running time was 10 min. The low and high concentration calibration curves were linear in the range of 50-1200 ng/ml and 1200-12,000 ng/ml, respectively. The intra- and inter-day coefficients of variation at three quality control concentrations of 100, 1200, and 12,000 ng/ml were all less than 6%, while the percent error ranged from -2.5 to 6.6%. The limit of quantitation (LOQ) for COL-3 in serum was 50 ng/ml. This assay was successfully employed to study the serum concentration-time profiles of COL-3 after its intravenous and oral administration in rats. The method with some minor modifications in sample pretreatment was also applicable to the determination of the concentrations of COL-3 in rat bile, urine and feces.  相似文献   

6.
A fast and sensitive high-performance liquid chromatographic method for determination of azithromycin in human serum using fluorescence detection was developed. The drug and an internal standard (clarithromycin) were extracted from serum using n-hexan and subjected to pre-column derivatization with 9-fluorenylmethyl chloroformate as labeling agent. Analysis was performed on a phenyl packing material column with sodium phosphate buffer containing 2 ml/l triethylamine (pH 5.9) and methanol (29:71, v/v) as the mobile phase. The standard curve was linear over the range of 10-500 ng/ml of azithromycin in human serum. The means between-days precision were from 13.3% (for 10 ng/ml) to 2% (500 ng/ml) and the within-day precision from 11.9 to 1.7% determined on spiked samples. The accuracy of the method was 100.7-107.2% (between days) and 100.3-107.8% (within day). The limit of quantification was 10 ng/ml. This method was applied in a bioequivalence study of four different azithromycin preparations in 12 healthy volunteers.  相似文献   

7.
A simple and sensitive high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of donepezil, a centrally and selectively acting acetyleholinesterase inhibitor, in human plasma. After sample alkalinization with 0.5 ml of NaOH (0.1 M), the test compound was extracted from I ml of plasma using isopropanol-hexane (3:97, v/v). The organic phase was back-extracted with 75 microl of HCl (0.1 M) and 50 microl of the acid solution was injected into a C18 STR ODS-II analytical column (5 microm, 150x4.6 mm I.D.). The mobile phase consisted of phosphate buffer (0.02 M, pH 4.6), perchloric acid (6 M) and acetonitrile (59.5:0.5:40, v/v) and was delivered at a flow-rate of 1.0 ml/min at 40 degrees C. The peak was detected using a UV detector set at 315 nm, and the total time for a chromatographic separation was approximately 8 min. The method was validated for the concentration range 3-90 ng/ml. Mean recoveries were 89-98%. Intra- and inter-day relative standard deviations were less than 7.3 and 7.6%, respectively, at the concentrations ranging from 3 to 90 ng/ml. The method shows good specificity with respect to commonly prescribed psychotropic drugs, and it could be successfully applied for pharmacokinetic studies and therapeutic drug monitoring.  相似文献   

8.
A sensitive and simple method based on solid-phase extraction (SPE) and HPLC with fluorescence detection for the determination of bisphenol A (BPA) and 4-nonylphenol (4-NP) in rat serum, liver and testis tissues has been developed. The chromatographic conditions consisted of a C18 column and mobile phase composition of acetonitrile and water with flow rate of 1.0 ml/min. The fluorescence detection was performed at excitation and emission wavelengths of 227 nm and 313 nm, respectively. Under these conditions, BPA and 4-NP were well separated and showed good linearities in the ranges of 0.01-50.0 microg/ml for BPA and 0.15-150.0 microg/ml for 4-NP with correlation coefficients greater than 0.999. The detection limits of serum and tissue samples were 2.8 ng/ml and 1.4 ng/g for BPA and 5.6 ng/ml and 2.8 ng/g for 4-NP at a signal-to-noise ratio (S/N) of 3. The intra-assay and the inter-assay precisions were better than 11.4%. Recoveries of BPA and 4-NP were 78.6-95.0% and 80.2-93.4%, respectively. The proposed method was applied to a toxicokinetic study of BPA and 4-NP including individual and combined oral administration to rats. The results showed that 4-NP remarkably altered the toxicokinetic parameters of BPA in testis, while parameters of BPA were not obviously altered in serum and liver under the experimental conditions investigated. On the other hand, there was no significant difference in the toxicokinetics of 4-NP when administered with BPA.  相似文献   

9.
A high-performance liquid chromatographic assay with UV detection has been developed for the determination of ketoconazole in human plasma. Quantitative extraction was achieved by a single solvent extraction involving a mixture of acetonitrile–n-butyl chloride (1:4, v/v). Ketoconazole and the internal standard (clotrimazole) were separated on a column packed with Inertsil ODS-80A material and a mobile phase composed of water–acetonitrile–tetrahydrofuran–ammonium hydroxide–triethylamine (45:50.2:2.5:0.1:0.1, v/v). The column effluent was monitored at a wavelength of 206 nm with a detector range set at 0.5. The calibration graph was linear in the range of 20–2000 ng/ml, with a lower limit of quantitation of 20.0 ng/ml. The extraction recoveries for ketoconazole and clotrimazole in human plasma were 93±9.7% and 83±10.0%, respectively. The developed method has been successfully applied to a clinical study to examine the pharmacokinetics of ketoconazole in a cancer patient.  相似文献   

10.
An isocratic high-performance liquid chromatographic (HPLC) method with UV absorbance detection is described for the quantification of clozapine (8-chloro-11-(4′-methyl)piperazino-5H-dibenzo[b,e]-1,4-diazepine) and its two major metabolites in plasma and red blood cells (RBCs). The method involves sample clean-up by liquid-liquid extraction with ethyl acetate. The organic phase was back-extracted with 0.1 M hydrochloric acid. Loxapine served as the internal standard. The analytes were separated by HPLC on a Kromasil Ultrabas C18 analytical column (5 μm particle size; 250×4.6 mm I.D.) using acetonitrile-phosphate buffer pH 7.0 (48:52, v/v) as eluent and were measured by UV absorbance detection at 254 nm. The limits of quantification were 20 ng/ml for clozapine and N-desmethylclozapine and 30 ng/ml for clozapine N-oxide. Recovery from plasma or RBCs proved to be higher than 62%. Precision, expressed as % C.V., was in the range 0.6–15%. Accuracy ranged from 96 to 105%. The method's ability to quantify clozapine and two major metabolites simultaneously with precision, accuracy and sensitivity makes it useful in therapeutic drug monitoring.  相似文献   

11.
A rapid, reproducible and accurate high-performance liquid chromatographic (HPLC) method for the quantitative determination of sphingomyelin in rat brain was developed and validated using normal-phase silica gel column, acetonitrile-methanol-water (65:18:17 (v/v)) at a flow rate of 1 ml/min, isocratic elution, UV detection at 207 nm and 1,2-dimyristoyl-sn-glycero-3-phosphocholine as an internal standard. Total run time was 10.0 min. The calibration curve was linear over the range of 0.025-0.4 mg/ml sphingomyelin (R2>0.99). The intra-day coefficient of variation ranged from 1.4% to 2.2%. The average inter-day coefficient of variation over a period of 4 days was 3.1%. The practical limit of detection was 0.005 mg/ml with a quantification limit of 0.01 mg/ml.  相似文献   

12.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay for the determination of alpha-naphthylisothiocyanate (1-NITC) and two metabolites alpha-naphthylamine (1-NA) and alpha-naphthylisocyanate (1-NIC) in rat plasma and urine has been developed. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Partisphere C(18) 5-microm column, a mobile phase of acetonitrile-water (ACN-H(2)O 70:30, v/v), and detection by ultraviolet (UV) absorption at 305 nm. The lower limits of quantitation (LLQ) in rat plasma, urine, and ACN were 10, 30, and 10 ng/ml for 1-NITC; 30, 100, and 30 ng/ml for 1-NA; and 30 ng/ml in ACN for 1-NIC. At low (10 ng/ml), medium (500 ng/ml), and high (5000 ng/ml) concentrations of quality control samples (QCs), the range of within-day and between-day accuracies were 95-106 and 97-103% for 1-NITC in plasma, respectively. Stability studies showed that 1-NITC was stable at all tested temperatures in ACN, and at -20 and -80 degrees C in plasma, urine, and ACN precipitated plasma and urine, but degraded at room temperature and 4 degrees C. 1-NA was stable in all of the tested matrices at all temperatures. 1-NIC was unstable in plasma, urine, and ACN precipitated plasma and urine, but stable in ACN. The degradation product of 1-NITC and 1-NIC in universal buffer was confirmed to be 1-NA. 1-NITC and 1-NA were detected and quantified in rat plasma and urine, following the administration of a 25 mg/kg i.v. dose of 1-NITC to a female Sprague-Dawley rat.  相似文献   

13.
Huperzine-A (Hup-A), a biologically potent, reversible acetylcholinesterase inhibitor for the treatment of Alzheimer disease (AD) in China, has very low blood concentration. In order to study the pharmacokinetics of newly developed Hup-A transdermal patches in animal, a rapid and sensitive ion-pair reverse-phase high performance liquid chromatography (RP-HPLC) method for the determination of Hup-A in beagle dog serum using mebendazole as internal standard has been developed and validated. The analyte and internal standard were extracted from serum using chloroform-isopropanol (95:5, v/v), analyzed on a C (18) column (5 microm, 150 mm x 4.6 mm i.d.) with a mobile phase consisting of methanol-water-glacial acetic acid (50:48.5:1.5, v/v/v), using sodium dodecylsulfonate as an ion-pair reagent, and detected with UV detector at 313 nm. The chromatographic run time was within 15 min. The assay was linear over the concentration range of 1-12 ng/ml and intra- and inter-day precision over this range was not more than 12.8%. The limit of quantification in serum was 1 ng/ml. The method was successfully applied to characterize the Hup-A concentration-time profiles and study the single and multiple doses phamacokinetics of Hup-A transdermal patches in beagle dogs. The pharmacokinetic study results showed that Hup-A patches has the characteristic of sustained or controlled drug release in vivo.  相似文献   

14.
A simple, sensitive and reproducible method was developed for the determination of lamotrigine in whole blood with on-line solid phase extraction followed by HPLC separation with UV detection. Whole blood samples were diluted 1:1 with water and then injected directly on a clean-up column dry-packed with 40microm C8 silica and separated on a C18 reversed-phase column (150x4.6mm) at room temperature. The extraction column was activated with methanol and conditioned with phosphate buffer of pH 4.5. Mobile phases consisted of phosphate buffer of pH 4.5 for the extraction column and of phosphate buffer of pH 4.5 - acetonitrile (60:40, v/v) for the analytical column. At a flow rate of 1.0ml/min and a connection time of 1.0min, the complete cycle time was 10.0min. Detection was carried out at 260nm. No internal standard was necessary. The method was linear over concentration range 0.2-20.0microg/ml for lamotrigine. Recovery was 98%. Within-day and between-day coefficients of variation ranged from 1.8 to 6.7%.  相似文献   

15.
A rapid and selective high-performance liquid chromatographic assay for simultaneous quantitative determination of a new antifilarial drug (UMF-058, I) and mebendazole (MBZ) is described. After a simple extraction from whole blood, both compounds were analysed using a C18 Nova Pak reversed-phase column and a mobile phase of methanol—0.05 M ammonium dihydrogenphosphate (50:50, v/v) adjusted to pH 4.0, with ultraviolet detection at 291 nm. The average recoveries of I and MBZ over a concentration range of 25–250 ng/ml were 92.0 ± 7.7 and 84.4 ± 4.4%, respectively. The minimum detectable concentrations in whole blood for I and MBZ were 7 and 6 ng/ml, respectively. This method was found to be suitable for pharmacokinetic studies.  相似文献   

16.
Topiramate has no ultraviolet, visible or fluorescence absorption. Analysis of the drug in human serum has been reported by high performance liquid chromatography (HPLC) with either mass detector or fluorescence detection after precolumn derivatization using 9-fluorenylmethyl chloroformate as fluorescent labeling agent. This study was aimed to validate derivatization and analysis of topiramate in human serum with HPLC using UV detection. The drug was extracted from human serum by liquid-liquid extraction and subjected to derivatization with 9-fluorenylmethyl chloroformate. Analysis was performed on a phenyl column using of spectrophotometer detection operated at wavelength of 264 nm. A mixture of phosphate buffer (0.05M) containing triethylamine (1 ml/l, v/v; pH 2.3) and methanol (28:72, v/v) at a flow rate of 2.5 ml/min was used as mobile phase. No interference was found with endogenous substances. Validity of the method was studied and the method was precise and accurate with a linearity range from 40 ng/ml to 40 microg/ml. The limit of quantification was 40 ng/ml of serum. The correlation coefficient between HPLC methods using fluorescence and UV detections was studied and found to be 0.992.  相似文献   

17.
A rapid and sensitive high-performance liquid chromatographic method was validated and described for determination of atorvastatin in human serum. Following liquid-liquid extraction of the drug and an internal standard (sodium diclofenac), chromatographic separation was accomplished using C18 analytical column with a mobile phase consisting of sodium phosphate buffer (0.05 M, pH 4.0) and methanol (33:67, v/v). Atorvastatin and the internal standard were detected by ultraviolet absorbance at 247 nm. The average recoveries of the drug and internal standard were 95 and 80%, respectively. The lower limits of detection and quantification were 1 and 4 ng/ml, respectively, and the calibration curves were linear over a concentration range of 4-256 ng/ml of atorvastatin in human serum. The analysis performance was studied and the method was applied in a randomized cross-over bioequivalence study of two different atorvastatin preparations in 12 healthy volunteers.  相似文献   

18.
We have developed a sensitive, selective and reproducible reversed-phase HPLC method with ultraviolet detection (340 nm) for the simultaneous quantification of amodiaquine (AQ) and its major metabolite, desethylamodiaquine (AQm) in a small volume (200 microl) of whole blood spotted on filter paper. The method involves liquid-liquid extraction with diethyl ether followed by elution from a reversed-phase phenyl column with an acidic (pH 2.8) mobile phase (25 mM KH2PO4-methanol; 80:20% (v/v) +1% (v/v) triethylamine). Calibration curves in spiked whole blood were linear from 100-2500 ng/ml (r2 > or = 0.99) for AQ and 200-2500 ng/ml (r2 > or = 0.99) for AQm. The limit of detection was 5 ng for AQ and 10 ng for AQm. The relative recovery at 150 ng/ml of AQ (n = 6) was 84.0% and at 300 ng/ml of AQm the relative recovery was 74.3%. The intra-assay coefficients of variation at 150, 600 and 2250 ng/ml of AQ and 300, 600 and 2250 ng/ml of AQm were 7.7, 8.9 and 6.2% (AQ) and 10.1, 5.4 and 3.9% (AQm), respectively. The inter-assay coefficient of variation at 150, 600 and 2250 ng/ml of AQ and 300, 600 and 2250 ng/ml of AQm were 5.2, 8.1 and 6.9% (AQ) and 3.3, 2.3 and 4.6% (AQm). There was no interference from other commonly used antimalarial and antipyretic drugs (chloroquine, quinine, sulfadoxine, pyrimethamine, artesunate, acetaminophen and salicylate). The method is particularly suitable for pharmacokinetic studies in settings where facilities for storing blood/plasma samples are not available.  相似文献   

19.
A rapid and simple high-performance liquid chromatographic (HPLC) method has been developed and validated for the determination of echinacoside (ECH) in rat serum. After protein precipitation of serum sample with trichloroacetic acid, the supernatant was directly injected and analyzed on a C(18) CapcellACR analytical column (150 mm x 4.6mm I.D. 5 microm) with a mobile phase consisting of acetonitrile-0.5% acetic acid (15.5:84.5, v/v). The UV detector was set at 330 nm. The lower limit of detection and quantification were 9 and 29.2 ng/mL, respectively, and the calibration curves were linear over the concentration range of 29.2-18250 ng/mL. The assay method was successfully applied to the study of the pharmacokinetics and bioavailability of ECH in rat.  相似文献   

20.
A method based on a liquid-liquid extraction procedure followed by high-performance liquid chromatography (HPLC) coupled with UV-visible detection is described and validated for the determination of lauroyl-indapamide in rat whole blood. The blood sample was extracted with diethyl ether after the addition of 10% trifluoroacetic acid (aq.). The chromatographic separation was performed on a Chromasil ODS column, using methanol-acetonitrile-tetrahydrofuran-0.2% trifluoroacetic acid (170:20:15:38, v/v/v/v) as the mobile phase. The UV detection wavelength was set at 240 nm. The extraction recovery of lauroyl-indapamide was ranged from 76.5 to 82.6%, and the calibration curve had a good linearity in the range of 0.048-200 microg/ml (r = 0.9976). The method presents appropriate intra-day and inter-days repeatabilities, showing values below 7.4% in terms of the percentage of relative standard deviation (R.S.D.). The method proposed is simple, rapid and sensitive, being useful for pharmacokinetic studies in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号