首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two naturally selected microbial populations were maintained under continuousflow conditions with glucose or magnesium growth-limiting. The reactors were subjected to shock loads by changing the influent substrate from L-lysine to a mixture of L-lysine and glucose, L-lysine and fructose, or L-lysine and ribose. During the subsequent transient state, the following parameters were examined: lysine chemical oxygen demand (COD), carbohydrate COD, total COD, biological solids concentration, cell protein, enzymatic capability (lysine-degrading enzymes), and the rate of lysine removal. The carbohydrate was then removed from the influent and the same parameters were examined until a new steady state was established. In all cases, glucose and fructose caused a significant repression of the synthesis of lysine-degrading enzymes, resulting in a decrease in the enzymatic capability of the cells. In the carbon-limited reactor, the faster the flow rate, the greater was the repression, whereas, in the magnesium-limited reactor, the slower the flow rate, the greater was the repression. The introduction of ribose into the reactors caused an initial increase in lysine enzymatic capability followed by a slight repression when ribose degradation started.  相似文献   

2.
Tryptases betaI and betaII were heterologously expressed and purified in yeast to functionally characterize the substrate specificity of each enzyme. Three positional scanning combinatorial tetrapeptide substrate libraries were used to determine the primary and extended substrate specificity of the proteases. Both enzymes have a strict primary preference for cleavage after the basic amino acids, lysine and arginine, with only a slight preference for lysine over arginine. betaI and betaII tryptase share similar extended substrate specificity, with preference for proline at P4, preference for arginine or lysine at P3, and P2 showing a slight preference for asparagine. Measurement of kinetic constants with multiple substrates designed for beta-tryptases reveal that selectivity is highly dependent on ground state substrate binding. Coupled with the functional determinants, structural determinants of tryptase substrate specificity were identified. Molecular docking of the preferred substrate sequence to the three-dimensional tetrameric tryptase structure reveals a novel extended substrate binding mode that involves interactions from two adjacent protomers, including P4 Thr-96', P3 Asp-60B' and Glu-217, and P1 Asp-189. Based on the determined substrate information, a mechanism-based tetrapeptide-chloromethylketone inhibitor was designed and shown to be a potent tryptase inhibitor. Finally, the cleavage sites of several physiologically relevant substrates of beta-tryptases show consistency with the specificity data presented here.  相似文献   

3.
I Lundquist 《Enzyme》1975,20(4):234-247
The effect of injection of glycogenolytic enzymes on tissue glycogen, blood glucose and plasma insulin was studied in mice. No effects were observed following phosphorylase, whereas the hydrolytic enzymes, alpha-amylase and acid amyloglucosidase depressed liver glycogen. In addition acid amyloglucosidase induced a decrease in blood glucose, a slight elevation of plasma insulin and a marked increase in tolbutamide-stimulated insulin release. At the doses given none of the enzymes affected muscle glycogen. Amyloglucosidase pretreatment markedly enhanced insulin release induced by glibenclamide, leucine, isoleucine, lysine and glucose whereas insulin release stimulated by IPNA, ACTH, glucagon and "CCK-PZ" was unaffected. Injection of acid amyloglucosidase has a profound influence on carbohydrate content and regulation in mice. It is suggested that the dependence or independence of amyloglucosidase activity among the insulin secretagogues tested might reflect different or partially different mechanisms in the process of insulin secretion.  相似文献   

4.
The effect of acetate as a glucose co-substrate on growth, lysine synthesis and experimental lysine yield from carbon substrates by Corynebacterium glutamicum RC 115 was investigated. It was found that low amounts of acetate, injected with a glucose-acetate pulse into the steady-state continuous culture in bioreactor, caused a slight decrease in the specific rates of glucose uptake and bacterial growth, but a significant increase in the cell specific rate of lysine synthesis and an increase in lysine yield. In contrast, acetate injected in high amounts was followed by a drastic decrease in the values of these parameters. A strong increase in experimental lysine yield under the latter conditions was reached in the response to pyruvate addition. Therefore it was shown that acetate in low concentrations can be used as a glucose co-substrate to increase the cell specific rate of lysine synthesis and lysine yield by C. glutamicum RC 115. Pyruvate supplementation was found as a promising method to enhance lysine synthesis by bacterial cells grown in glucose-acetate media with an increased concentration of acetate.  相似文献   

5.
6.
The role of three histidine residues (His205, His296 and His303) and Asp259, important for the catalysis of NAD+-specific D-lactate dehydrogenase, was investigated using site-directed mutagenesis. None of these residues is presumed to be involved in coenzyme binding because Km for NADH remained essentially unchanged for all the mutant enzymes. Replacement of His205 with lysine resulted in a 125-fold reduction in kcat and a slight lowering of the Km value for pyruvate. D259N mutant showed a 56-fold reduction in kcat and a fivefold lowering of Km. The enzymatic activity profile shifted towards acidic pH by approximately 2 units. The H303K mutation produced no significant change in kcat values, although Km for pyruvate increased fourfold. Substitution of His296 with lysine produced no significant change in kcat values or in Km for substrate. The results obtained suggest that His205 and Asp259 play an important role in catalysis, whereas His303 does not. This corroborates structural information available for some members of the D-specific dehydrogenases family. The catalytic His296, proposed from structural studies to be the active site acid/base catalyst, is not invariant. Its function can be accomplished by lysine and this has significant implications for the enzymatic mechanism.  相似文献   

7.
Among the phenotypes of Saccharomyces cerevisiae mutants lacking CuZn-superoxide dismutase (Sod1p) is an aerobic lysine auxotrophy; in the current work we show an additional leaky auxotrophy for leucine. The lysine and leucine biosynthetic pathways each contain a 4Fe-4S cluster enzyme homologous to aconitase and likely to be superoxide-sensitive, homoaconitase (Lys4p) and isopropylmalate dehydratase (Leu1p), respectively. We present evidence that direct aerobic inactivation of these enzymes in sod1 Delta yeast results in the auxotrophies. Located in the cytosol and intermembrane space of the mitochondria, Sod1p likely provides direct protection of the cytosolic enzyme Leu1p. Surprisingly, Lys4p does not share a compartment with Sod1p but is located in the mitochondrial matrix. The activity of a second matrix protein, the tricarboxylic acid cycle enzyme aconitase, was similarly lowered in sod1 Delta mutants. We measured only slight changes in total mitochondrial iron and found no detectable difference in mitochondrial "free" (EPR-detectable) iron making it unlikely that a gross defect in mitochondrial iron metabolism is the cause of the decreased enzyme activities. Thus, we conclude that when Sod1p is absent a lysine auxotrophy is induced because Lys4p is inactivated in the matrix by superoxide that originates in the intermembrane space and diffuses across the inner membrane.  相似文献   

8.
Only lysine epsilon-amino groups (and the N-terminal alpha-amino group) in native subtilisin DY were reductively alkylated by glyceraldehyde in the presence of sodium cyanoborohydride. The modified protein molecule was cleaved by TosPheCH2Cl-trypsin or cyanogen bromide and the two sets of peptides obtained were fractionated and purified by gel filtration and HPLC. For determination of the degree of modification of each lysine residue, selected peptides were subjected to sequence analysis combined with quantitative estimation of the containing PTH-Lys and PTH-epsilon-DHP-Lys. The data obtained showed that the lysine residues in positions 12, 15, 27, 43, 136, 141, 265 were entirely modified, those in positions 170, 184, 237 were partially modified, and Lys22 and Lys94 were unaccessible for the reagent. The caseinolytic activity decreased by 23% when the maximum number of lysine residues (8.6 of the total 12 residues) in subtilisin DY were modified. The CD-spectra of native and modified enzyme showed only slight differences. Both these experiments suggest that the lysine residues do not take part directly in the catalytic reaction but are responsible for maintaining the native three-dimensional enzyme structure. The data obtained for the accessibility of the different lysine residues in subtilisin DY correlated very well with the positions of these residues in a video model of the structure of subtilisin Carlsberg, thus suggesting that the spatial structures of these two enzymes are very similar.  相似文献   

9.
Sundlass NK  Raines RT 《Biochemistry》2011,50(47):10293-10299
Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes necessary for Onconase to elicit its cytotoxic activity. In the variant R-Onconase, 10 of the 12 lysine residues in Onconase are replaced with arginine, leaving only the two active-site lysines intact. Cytometric assays quantifying internalization showed a 3-fold increase in the internalization of R-Onconase compared with Onconase. R-Onconase also showed greater affinity for heparin and a 2-fold increase in ribonucleolytic activity. Nonetheless, arginine substitution endowed only a slight increase in toxicity toward human cancer cells. Analysis of denaturation induced with guanidine-HCl showed that R-Onconase has less conformational stability than does the wild-type enzyme; moreover, R-Onconase is more susceptible to proteolytic degradation. These data indicate that arginine residues are more effective than lysine in eliciting cellular internalization but can compromise other aspects of protein structure and function.  相似文献   

10.
11.
Rhizopuspepsin and other fungal aspartic proteinases are distinct from the mammalian enzymes in that they are able to cleave substrates with lysine in the P1 position. Sequence and structural comparisons suggest that two aspartic acid residues, Asp 30 and Asp 77 (pig pepsin numbering), may be responsible for generating this unique specificity. Asp 30 and Asp 77 were changed to the corresponding residues in porcine pepsin, Ile 30 and Thr 77, to create single and double mutants. The zymogen forms of the wild-type and mutant enzymes were overexpressed in Escherichia coli as inclusion bodies. Following solubilization, denaturation, refolding, activation, and purification to homogeneity, structural and kinetic comparisons were made. The mutant enzymes exhibited a high degree of structural similarity to the wild-type recombinant protein and a native isozyme. The catalytic activities of the recombinant proteins were analyzed with chromogenic substrates containing lysine in the P1, P2, or P3 positions. Mutation of Asp 77 resulted in a loss of 7 kcal mol-1 of transition-state stabilization energy in the hydrolysis of the substrate containing lysine in P1. An inhibitor containing the positively charged P1-lysine side chain inhibited only the enzymes containing Asp 77. Inhibition of the Asp 77 mutants of rhizopuspepsin and several mammalian enzymes was restored upon acetylation of the lysine side chain. These results suggest that an exploitation of the specific electrostatic interaction of Asp 77 in the active site of fungal enzymes may lead to the design of compounds that preferentially inhibit a variety of related Candida proteinases in immunocompromised patients.  相似文献   

12.
A general survey of the regulation in lysine biosynthesis in Escherichia coli K12 is presented. No polygenic operon exists for the genes that code for enzymes of the lysine biosynthetic pathway. Lysyl-tRNA is not directly involved as a co-repressor in the pathway. Different regulation mechanisms must exist for the different enzymes. In the case of the last enzyme, diaminopimelate decarboxylase, its synthesis is induced in vivo by the lysine-sensitive aspartokinase under its non-inhibited allosteric conformation.  相似文献   

13.
The covalent attachment of ubiquitin (Ub) to short-lived or damaged proteins is believed to be the signal that initiates their selective degradation. In several cases, it has been shown that the proteolytic signal takes the form of a multi-Ub chain in which successive Ub molecules are linked tandemly at lysine 48 (K-48). Here we show that Ub molecules can be linked together in vivo at two other lysine positions, lysine 29 (K-29) and lysine 63 (K-63). The formation of these alternative linkages is strongly dependent on the presence of the stress-related Ub conjugating enzymes UBC4 and UBC5. Furthermore, expression of Ub carrying a K-63 to arginine 63 substitution in a strain of Saccharomyces cerevisiae that is missing the poly-Ub gene, UBI4, fails to compensate for the stress defects associated with these cells. Taken together, these results suggest that the formation of multi-Ub chains involving K-63 linkages plays an important role in the yeast stress response. In broader terms, these results also suggest that Ub is a versatile signal in which different Ub chain configurations are used for different functions.  相似文献   

14.
Catabolism of lysine through the pipecolate, saccharopine and cadaverine pathways has been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Both enzymes of the saccharopine pathway (lysine ketoglutarate reductase (LKR) and saccharopine dehydrogenase (SDH)) were active in L3 and adult worms of both species. All three enzymes which catabolise lysine to α-amino adipic semialdehyde via pipecolate (lysine oxidase (LO), Δ(1)-piperideine-2-carboxylate reductase (Pip2CR) and pipecolate oxidase (PipO)) were present in adult worms, whereas the pathway was incomplete in L3 of both species; Pip2CR activity was not detected in the L3 of either parasite species. In adult worms, the saccharopine pathway would probably be favoured over the pipecolate pathway as the K(m) for lysine was lower for LKR than for LO. Neither lysine dehydrogenase nor lysine decarboxylase activity was detected in the two parasite species. Enzyme activities and substrate affinities were higher for all five enzymes in adult worms than in L3. An unexpected finding was that both LKR and SDH were dual co-factor enzymes and not specific for either NAD(+) or NADP(+), as is the case in other organisms. This novel property of LKR/SDH suggests it could be a good candidate for anthelmintic targeting.  相似文献   

15.
Dihydropicolinate synthase (DHDPS; E.C. 4.2.1.52) catalyses the first committed step of lysine biosynthesis in plants and bacteria. Plant DHDPS enzymes, which are responsible solely for lysine biosynthesis, are strongly inhibited by lysine (I0.5 =10 microM), whereas the bacterial enzymes which are less responsive or insensitive to lysine inhibition have the additional function of meso-diaminopimelate biosynthesis which is required for cell wall formation. Previous studies have suggested that expression of the Escherichia coli dapA gene, encoding DHDPS, is unregulated. We show here that this is not the case and that expression of LacZ from the dapA promoter (PdapA) increases in response to diaminopimelic acid limitation in E. coli K-12.  相似文献   

16.
Pathway of lysine degradation in Fusobacterium nucleatum.   总被引:5,自引:3,他引:2       下载免费PDF全文
Lysine was fermented by Fusobacterium nucleatum ATCC 25586 with the formation of about 1 mol each of acetate and butyrate. By the use of [1-14C]lysine or [6-14C]lysine, acetate and butyrate were shown to be derived from both ends of lysine, with acetate being formed preferentially from carbon atoms 1 and 2 and butyrate being formed preferentially from carbon atoms 3 to 6. This indicates that the lysine carbon chain is cleaved between both carbon atoms 2 and 3 and carbon atoms 4 and 5, with the former predominating [1-14C]acetate was also extensively incorporated into butyrate, preferentially into carbon atoms 3 and 4. Cell-free extracts of F. nucleatum were shown to catalyze the reactions of the 3-keto,5-aminohexanoate pathway of lysine degradation, previously described in lysine-fermenting clostridia. The 3-keto,5-aminohexanoate cleavage enzyme was partially purified and shown to have properties much like those of the clostridial enzyme. We conclude that both the pathway and the enzymes of lysine degradation are similar in F. nucleatum and lysine-fermenting clostridia.  相似文献   

17.
Two aspartokinase (ATP:L-aspartate 4-phosphotrasferase, EC 2.7.2.4) enzyme activities have been identified and partially purified from Bacillus brevis. Aspartokinase I is subject to both inhibition and repression by lysine, and has a molecular weight in the region of 110 000. Aspartokinase II is a lysine-stabilised enzyme, inhibited multivalently by lysine plus theonine and has a molecular weight in the region of 95 000. This attern of aspartokinase activity has not been described previously and is unusual in that one end product (lysine) regulates two isoenzymes catalysing the first reaction of a branced biosynthetic pathway. In the absence of lysine, aspartokinase II changes to a more unstable non-inhibitable enzyme. Both enzymes are stabilised by sulphydryl reducing agents and have similar affinities for ATP, aspartate and lysine. However, there is no evidence for a view that they are products of a common gene. Problem concerned with the regulation of aspartokinase activities in Bacillus species are discussed.  相似文献   

18.
Lysine is one of the nutritionally limiting amino acids in food and feed products made from maize (Zea mays L.). Two enzymes in the lysine biosynthesis pathway, aspartate kinase (AK) and dihydrodipicolinate synthase (DHPS), have primary roles in regulating the level of lysine accumulation in plant cells because both enzymes are feedback-inhibited by lysine. An isolated cDNA clone for maize DHPS was modified to encode a DHPS much less sensitive to lysine inhibition. The altered DHPS cDNA was transformed into maize cell suspension cultures to determine the effect on DHPS activity and lysine accumulation. Partially purified DHPS (wildtype plus mutant) from transformed cultures was less sensitive to lysine inhibition than wild-type DHPS from nontransformed cultures. Transformed cultures had cellular free lysine levels as much as four times higher than those of nontransformed controls. Thus, we have shown that reducing the feedback inhibition of DHPS by lysine can lead to increased lysine accumulation in maize cells. Increasing the capacity for lysine synthesis may be an important step in improving the nutritional quality of food and feed products made from maize.  相似文献   

19.
To determine whether Salmonella typhimurium has a nitrogen control response, we have examined the regulation of nitrogen utilization in two mutants with fivefold and threefold elevations in their glutamine synthetase activities. The mutants do not require glutamine for growth on glucose--ammonia medium but do have altered growth on other nitrogen sources. They grow better than an isogenic control on media containing arginine or asparate, but more slowly with proline or alanine as nitrogen sources. This unusual growth pattern is not due to altered regulation of the ammonia assimilatory enzymes, glutamate dehydrogenase and glutamate synthase, or to changes in the enzymes for aspartate degradation. However, transport for several amino acids may be affected. Measurement of amino acid uptake show that the mutants with high glutamine synthetase levels have increased rates for glutamine, arginine, aspartate, and lysine, but a decreased rate for proline. The relationship between glutamine synthetase levels and uptake was examined in two mutants with reduced, rather than increased, glutamine synthetase production. The uptake rates for glutamine and lysine were lower in these two glutamine auxotrophs than in the Gln+ controls. These results show a correlation between the glutamine synthetase levels and the uptake rates for several amino acids. In addition, the pleiotropic growth of the mutants with elevated glutamine synthetase activities suggests that a nitrogen control response exists for S. typhimurium and that it can be altered by mutations affecting glutamine synthetase regulation.  相似文献   

20.
With the aim of elucidating how plants synthesize lysine, extracts prepared from corn, tobacco, Chlamydomonas and soybean were tested and found to lack detectable amounts of N-alpha-acyl-L,L-diaminopimelate deacylase or N-succinyl-alpha-amino-epsilon-ketopimelate-glutamate aminotransaminase, two key enzymes in the central part of the bacterial pathway for lysine biosynthesis. Corn extracts missing two key enzymes still carried out the overall synthesis of lysine when provided with dihydrodipicolinate. An analysis of available plant DNA sequences was performed to test the veracity of the negative biochemical findings. Orthologs of dihydrodipicolinate reductase and diaminopimelate epimerase (enzymes on each side of the central pathway) were readily found in the Arabidopsis thaliana genome. Orthologs of the known enzymes needed to convert tetrahydrodipicolinate to diaminopimelic acid (DAP) were not detected in Arabidopsis or in the plant DNA sequence databases. The biochemical and reinforcing bioinformatics results provide evidence that plants may use a novel variant of the bacterial pathways for lysine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号