首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract. In germinating seedlings of Sinapis alba , nitrate reductase activity is under phytochrome control and becomes accessible to phytochrome at about 15 h from sowing. The induction of the enzyme with pulses of light is strongly affected by pretreatments given prior to 15 h, also acting through phytochrome. It is shown that the effects of these pretreatments can persist undiminished for a considerable time (>40 h) but do not alter the pattern of the subsequent responsiveness to Pfr. The nitrate reductase response is compared with other data pertaining to a similar response.  相似文献   

2.
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

3.
H. Kasemir  P. Huber  H. Mohr 《Planta》1976,132(2):157-160
Summary Significant accumulation of photoconvertible protochlorophyll(ide) in the cotyledons of the mustard seedling takes place from 24 h after sowing onwards (25° C). The rate of accumulation in darkness is greatly increased by a pretreatment with red or far-red light. The strong effect of continuous red light, given from the time of sowing, remains fully reversible by a 756 nm-light pulse up to about 18 h after sowing. On the other hand, the effect of continuous far-red light which can be detected at 15 h after sowing is not influenced by a subsequent application of 756 nm-light pulses. An interpretation of the data requires the concept that continuous red light and continuous far-red light act from different sites. This conclusion is based on a comparison of the present data with the earlier published data on phytochromemediated anthocyanin synthesis in the mustard seedling cotyledons.Abbreviations PChl protochlorophyll(ide) - Chl chlorophyll(ide) - Ptr far-red absorbing form of the phytochrome system (physiologically active) - Pr red absorbing form of the phytochrome system - [Ptot] [Pr]+[Pfr] Supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 46).  相似文献   

4.
In excised wheat leaves, the activity of nitrate reductase was enhanced by a brief pulse of red light and this increase was reversed by far-red light irradiation. Even under continuous far-red light, nitrate reductase activity increased by 258% after 18 h. When leaves were kept in distilled water during exposure to red light and then transferred to potassium nitrate, there was no difference in endogenous nitrate concentration. The nitrate reductase activity was the same whether leaves were floated in potassium nitrate or in distilled water during irradiation. Partial to complete inhibition of enzyme activity was observed when leaves were incubated in actinomycin-D and cycloheximide respectively, following 4 h of red light irradiation.In vitro irradiation of extract had no significant effect on nitrate reductase activity  相似文献   

5.
The etioplast»chloroplast transition in the cotyledons of mustard seedlings (Sinapis alba L.) has been studied by electron microscopy. It was found that the active form of phytochrome, established by a red light pulse pretreatment, increases the initial rate and eliminates the lag of grana and stroma thylakoid formation after the onset of white light 60 h after sowing. The effect of a pretreatment with 15 s red light pulses is fully reversible by 756 nm light pulses. This reversibility is lost within 5 min. Evidence is presented which suggests that the time course of grana and stroma thylakoid formation is not correlated with the time course of the dispersal of the prolamellar body. The different functions of phytochrome and chlorophyll in controlling thylakoid formation are discussed.  相似文献   

6.
The steady-state levels of nitrate, nitrite, and ammonium were estimated in the green alga Ulva rigida C. Agardh in darkness after addition of 0.5 mM KNO3 and irradiation with red (R) and blue (B) light pulses of different duration (5 and 30 min). The net uptake of nitrate was very rapid. Seventy-five percent of the nitrate added was consumed after 60 min in darkness. Although uptake was stable after R or B, efflux of nitrate occurred within 3 h in the dark control and when R or B were followed by far-red (FR) irradiation. The internal nitrate concentration after 3 h in darkness was similar after R and B light pulses; however, the intracellular ammonium was higher after R than after B. The intracellular nitrate and ammonium decreased when FR tight pulses were applied immediately after R or B. Thus, the involvement of phytochrome in the transport of nitrate and ammonium is proposed. Nitrate reductase activity, measured by the in situ method, was increased by both R and B light pulses. The effect was partially reversed by FR light. Nitrate reductase activity was higher after 5 min of R light than after 5 min of B. However, after 30-min light pulses, the relative increase in activity was reversed for R and B. We propose that phytochrome and a blue-light photoreceptor are involved in regulation of nitrogen metabolism. Nitrate uptake and reduction correlates with previously detected light-regulated accumulation of protein in Ulva rigida under the same experimental conditions.  相似文献   

7.
C. B. Johnson 《Planta》1976,129(2):127-131
Summary Nitrate reductase in the cotyledons of etiolated seedlings of Sinapis alba L. responds rapidly to the addition of nitrate. The response is inhibited by cycloheximide at low concentrations. The enzyme is also under phytochrome control. Five minutes of red light irradiation leads instantaneously to a 45% increase in enzyme activity. Increases in activity, linear with respect to time and with no lag phases are promoted by continuous far-red or blue irradiation. These increases are insensitive to cycloheximide. Thus, light and nitrate act through different mechanisms in controlling nitrate reductase activity and phytochrome does not act via controlling the rate of synthesis of the enzyme.Abbreviation cot pr pair of cotyledons  相似文献   

8.
Abstract. The effectiveness of a red-light pulse acting through phytochrome in inducing primary leaf expansion in 9-d-old etiolated bean ( Phaseolus vulgaris L. ev. Limburg) seedlings is strongly increased by a continuous far-red light (CFR) pretreatment. This increase in effectiveness of a red pulse is positively correlated with the time and the fluence rate of the CFR pretreatment. Escape from photoreversibility of this red pulse after the CFR pretreatment is extremely slow (more than 3 d). When a dark period is interposed between the end of the CFR pretreatment and the inductive red pulse the photoreversible part of the response to this pulse is highly dependent upon the photostationary state of phytochrome at the onset of the dark period.
The results give strong evidence for the synergistic activity of two components of phytochrome action during leaf growth induction, one of them acting via a very stable Pfr fraction.  相似文献   

9.
10.
Continuous recordings of the effect of red light on intact darkgrown wheat seedlings (Triticum aestivum L. cv. Hatri) weremade at different times after sowing. When the coleoptile tipregion was irradiated 50, 70 or 90 h after sowing with red lightfrom two opposite fibre bundles a decrease in extension ratewas detectable after a latent period of 10 to 15 min. Growthrate reached a fluence dependent minimum at about 60 min, afterwhich growth acceleration towards the dark control rate wasobserved. When continuous red irradiation was started 50 or70 h after sowing the dark control rate was reached 2.5 h afteronset of irradiation and growth rate was little above this levelduring the next 2 h. With older coleoptiles (90 h after sowing)the growth rate recovery was only up to 50% of the dark controlrate and a second phase in growth inhibition became detectableabout 2.5 h after onset of red exposure, characterized by acontinuous decrease in extension rate. Under R/FR pulse irradiationboth the red-light-induced transient growth inhibition and thesecond phase of growth inhibition exhibit far-red reversibilityup to the level of far-red induced growth rate changes. (Received September 19, 1986; Accepted December 8, 1986)  相似文献   

11.
S. Frosch  H. Drumm  H. Mohr 《Planta》1977,136(2):181-186
Phytochrome controls the appearance of many enzymes in the mustard (Sinapis alba L.) cotyledons. The problem has been whether the effect of phytochrome on the appearance of enzymes in this organ is due to a common initial action of Pfr, e.g. due to the liberation of a second messenger. We have compared the modulation by light (phytochrome) of the appearance of phenylalanine ammonia lyase (PAL)+ and ribulosebisphosphate carboxylase (Carboxylase)+. PAL becomes detectable in the mustard cotyledons at 27 h after sowing while Carboxylase starts to appear only at 42 h after sowing (starting points, 25° C). The starting points cannot be shifted by light. As a major result, in the case of PAL the inductive effect of continuous red light (given from the time of sowing) remains fully reversible by 756 nm-light up to the starting point (27 h after sowing) while with Carboxylase full reversibility in continuous red light is lost at approximately 15 h after sowing. While the induction of Carboxylase is already saturated at a very low level of Pfr (e.g. continuous 756 nm-light saturates the response) and does not depend on irradiance (e.g. continuous 675 mW m-2 red light and 67.5 mW m-2 red light lead to the same time course), PAL induction is a graded response over a wide range of Pfr doses and depends strongly on the fluence rate (high irradiance response, HIR). It is concluded that PAL induction and Carboxylase induction are not only separated in time but differ in every regard except that both responses are mediated by phytochrome.The present data support the previous conclusion that the specification of the temporal and spatial pattern of development is independent of phytochrome even though the realization of the pattern of development can only occur in the presence of phytochrome (Pfr). It seems that there is no feedback from pattern realization to pattern specification.Abbreviations Pfr the far-red absorbing, physiologically active form of phytochrome - Pr the red absorbing physiologically inactive form of phytochrome - Ptotal [Pr]+[Pfr] - PAL phenylalanine ammonia-lyase (EC 4.3.1.5) - Carboxylase ribulosebisphosphate carboxylase (EC 4.1.1.39)  相似文献   

12.
Abstract Mustard seedlings were light treated at 24 h after sowing (25°C) to induce phytochrome-mediated anthocyanin synthesis in cotyledons and hypocotylar hook. All light treatments were performed within the range of the reciprocity law. The in situ photoconversion kinetics of phytochrome (Pr→ Pfr) were measured under the same light treatment. It was found that between 0.4 and 1.0 relative Pfr level the amount of anthocyanin extracted from the organs at 52 h after sowing was linearily correlated with the amount of Pfr produced at 24 h in cotyledons and hypocotylar hook. It is concluded that an explanation of the fluence response function for red light mediated anthocyanin synthesis in the mustard seedling does not require the concept of active vs. bulk phytochrome.  相似文献   

13.
In etiolated squash (Cucurbita maxima L.) cotyledons, nitrate-inducible NADH:nitrate reductase activity and protein were increased in darkness by red light pulses with red/far-red photoreversibility. Continuous far-red light also led to increased levels of nitrate reductase activity and protein. Poly(A)+RNA, which hybridizes to squash nitrate reductase cDNA, was also increased by light treatments. Thus, we found that after nitrate triggering, nitrate reductase expression appears to be regulated by light via phytochrome.  相似文献   

14.
Seed germination is often induced by a pulse of red light perceived by phytochrome and cancelled by a subsequent pulse of far-red light. When the pulse of red light is followed by several hours of darkness, a pulse of far-red light is no longer effective and prolonged far-red is necessary to block germination. The aim was to investigate whether the red light pulse and prolonged far-red light act on the same or different processes during germination of Datura ferox seeds. Forty-five hours after the inductive red light pulse, germination could not be blocked by one pulse or six hourly pulses of far-red light, but was significantly reduced by 6 h of continuous far-red light. The pulse of red light increased embryo growth potential and the activities of beta-mannanase and beta-mannosidase extracted from the micropylar region of the endosperm. Continuous far-red light had no effect on embryo growth potential or beta-mannosidase activity, but severely reduced the activity of beta-mannanase. The effect of far-red light had the features of a high-irradiance response of phytochrome. Both germination and beta-mannanase activity were restored by a pulse of red light given after the end of the continuous far-red treatment. It is concluded that the low-fluence response and the high-irradiance response modes of phytochrome have antagonistic effects on seed germination and that the control of beta-mannanase activity is one process where this antagonism is established.  相似文献   

15.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

16.
17.
A brief pulse of red light (R) given to darkgrown seedlings ofArabidopsis thaliana (L.) Heyn. potentiates rapid synthesis of chlorophyll upon transfer to continuous white light. The time course for potentiation of rapid greening shows that a R pulse in the LF (low fluence) range has maximal effect within a few hours, and that there is a small VLF (very low fluence) component as well. Partial reversal of the effect of R by far-red light (FR) indicates that the pulse acts through phytochrome. As it does in the wild-type (WT), a pulse of R accelerates greening of long-hypocotyl (hy) mutants. The extent of induction by the R pulse was about the same in the WT and in allhy mutants studied. Reversibility by FR was greatly decreased in thehy-1 andhy-2 strains. It is possible that these mutants contain a species of phytochrome with defective phototransformation kinetics. If there is such a defective phytochrome species, it nevertheless appears to be active in the potentiation of rapid greening. Dedicated to Professor Hans Mohr on the occasion of his 60th birthday  相似文献   

18.
A brief pulse of red light accelerates chlorophyll accumulation upon subsequent transfer of dark-grown tomato (Lycopersicon esculentum) seedlings to continuous white light. Such potentiation of greening was compared in wild type and an aurea mutant W616. This mutant has been the subject of recent studies of phytochrome phototransduction; its dark-grown seedlings are deficient in phytochrome, and light-grown plants have yellow-green leaves. The rate of greening was slower in the mutant, but the extent (relative to the dark control) of potentiation by the red pulse was similar to that in the wild type. In the wild type, the fluence-response curve for potentiation of greening indicates substantial components in the VLF (very low fluence) and LF (low fluence) ranges. Far-red light could only partially reverse the effect of red. In the aurea mutant, only red light in the LF range was effective, and the effect of red was completely reversed by far-red light. When grown in total darkness, aurea seedlings are also deficient in photoconvertible PChl(ide). Upon transfer to white light, the aurea mutant was defective in both the abundance and light regulation of the light-harvesting chlorophyll a/b binding polypeptide(s) [LHC(II)]. The results are consistent with the VLF response in greening being mediated by phytochrome. Furthermore, the data support the hypothesis that light modulates LHC(II) levels through its control of the synthesis of both chlorophyll and its LHC(II) apoproteins. Some, but not all, aspects of the aurea phenotype can be accounted for by the deficiency in photoreception by phytochrome.  相似文献   

19.
Arabidopsis thaliana lacking phytochrome A, phytochrome B or both (double mutant) were analyzed by comparing their photoresponse with that of the wild type. Results indicate that root hair formation in Arabidopsis was strongly stimulated by light irradiation. Both phytochrome A and phytochrome B are responsible for photoinduction by continuous red light irradiation, while only phytochrome A mediates the response under continuous far-red light. The fluence response relationships to a red light pulse in the wild type displayed a biphasic trend similar to that previously observed in lettuce seedlings, with the first phase showing a sharp maximum at 78.3 Jm−2, and the second one operating over a wider fluence range (3,100–9,400 Jm−2) two orders of magnitude higher than the first one. Analysis of the fluence response curves for red light induction in the phytochrome mutants revealed that phytochrome A is responsible for the first phase in the wild type, while the second is the result of the combined action of both phytochrome A and phytochrome B. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

20.
Brief red light irradiation (5 min) of etiolated pea seedlings causes a 40 to 50% decline in microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, and far red reversal experiments indicate phytochrome mediation. The response is apparent at the earliest assay time, 5 min after irradiation, hence there is little or no lag period; a substantial change occurs within 10 min, and a 24% decrease at 1 h. Activity remains low for about 24 h. The response half-time is about 25 min. Cordycepin affects activity only after 3 h; cycloheximide inhibits only 6% at 1 h and has no effect on activity for at least 20 to 30 min after it blocks protein synthesis. It is concluded that phytochrome regulates reductase activity indirectly through a posttranslational mechanism which causes a stable change in enzyme activity; there is no indication that phytochrome acts by binding directly to the reductase. The decline in reductase activity following irradiation, or cycloheximide treatment, does not follow first-order kinetics. Mixing experiments suggest increased levels of a reductase inactivator in irradiated tissues. The low reductase activity in green seedlings is increased by treatment with dibutyryl-cyclicAMP. Abscisic acid and cholesterol applied to etiolated seedlings reduce activity of the enzyme but gibberellic acid has no effect. However, abscisic acid and cholesterol added to reaction mixtures do not inhibit activity. The metabolic consequences of the rapid light-induced enzyme response may trigger, or contribute to, later biochemical responses previously assumed to be under more direct phytochrome control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号