首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
2.
The autonomous replication region of plasmid ColIb-P9 contains repZ encoding the RepZ replication protein, and inc and repY as the negative and positive regulators of repZ translation, respectively. inc encodes the antisense Inc RNA, and repY is a short open reading frame upstream of repZ. Translation of repY enables repZ translation by inducing formation of a pseudoknot containing stem-loop I, which base pairs with the sequence preceding the repZ start codon. Inc RNA inhibits both repY translation and formation of the pseudoknot by binding to the loop I. To investigate control of repY expression by Inc RNA, we isolated a number of mutations that express repY in the presence of Inc RNA. One class of mutations delete a part of another stem-loop (II), which derepresses repY expression by initiating translation at codon 10 (GUG), located within this structure. Point mutations in stem-loop II can also derepress repY translation, and the introduction of compensatory base-changes restores control of repY translation. These results not only indicate that suppressing a cryptic start codon by secondary structure is important for maintaining the translational control of repZ but also demonstrate that the position of start site for repY translation is critical for its control by Inc RNA. Thus, Inc RNA controls repY translation by binding in the vicinity of the start codon, in contrast to the control of repZ expression at the level of loop-loop interaction.  相似文献   

3.
The frequency of replication initiation of the ColIb-P9 plasmid depends on the level of repZ expression, which has been shown to be negatively regulated by inc RNA, the approximately 70-base-long product of the inc gene. To further understand the regulatory mechanism of repZ gene expression, we isolated mutants defective in ColIb-P9 replication using a lambda:ColIb-P9 hybrid phage. Among six mutants isolated, one amber mutant, rep57, failed to synthesize the RepZ protein. The mutation occurred in the repZ leader sequence that encodes a 29-amino-acid reading frame, designated as repY. We also isolated mutants that suppressed the rep57 phenotype. These mutations were single base insertions between the repY initiation codon and the rep57 mutation site and resulted not only in a frame shift of repY but also in the formation of repY-repZ fusions without changing the amino acid sequence of RepZ. Thus, repY is not directly involved in the replication reaction but rather functions as a positive regulator for repZ expression. We propose that repZ expression is coupled with repY translation, which acts to disrupt a secondary structure sequestering the repZ translation initiation signal. The positive and negative regulations of repZ expression were discussed. The other mutants were mapped in repZ, confirming that repZ is essential for ColIb-P9 replication.  相似文献   

4.
The antisense Inc RNA encoded by the IncIalpha ColIb-P9 plasmid replicon controls the translation of repZ encoding the replication initiator and its leader peptide repY at different rates with different mechanisms. The initial loop-loop base pairing between Inc RNA and the target in the repZ mRNA leader inhibits formation of a pseudoknot required for repZ translation. A subsequent base pairing at the 5' leader of Inc RNA blocks repY translation. To delineate the molecular basis for the differential control, we analyzed the intermediate complexes formed between RepZ mRNA and Inc RNA(54), a 5'-truncated Inc RNA derivative. We found that the initial base pairing at the loops transforms into a more stable intermediate complex by its propagation in both directions. The resulting extensive base pairing indicates that the inhibition of the pseudoknot formation is established at this stage. Furthermore, the region of extensive base pairing includes bases different in related plasmids showing different incompatibility. Thus, the observed extensive base pairing is important for determining the incompatibility of the low-copy-number plasmids. We discuss the evolution of replication control systems found in IncIalpha, IncB, and IncFII group plasmids.  相似文献   

5.
K Asano  K Mizobuchi 《The EMBO journal》1998,17(17):5201-5213
Replication of a low-copy-number IncIalpha plasmid ColIb-P9 depends on expression of the repZ gene encoding the replication initiator protein. repZ expression is negatively controlled by the small antisense Inc RNA, and requires formation of a pseudoknot in the RepZ mRNA consisting of stem-loop I, the Inc RNA target, and a downstream sequence complementary to the loop I. The loop I sequence comprises 5'-rUUGGCG-3', conserved in many prokaryotic antisense systems, and was proposed to be the important site of copy number control. Here we show that the level of repZ expression is rate-limiting for replication and thus copy number, by comparing the levels of repZ expression and copy number from different mutant ColIb-P9 derivatives defective in Inc RNA and pseudoknot formation. Kinetic analyses using in vitro transcribed RNAs indicate that Inc RNA binding and the pseudoknot formation are competitive at the level of initial base paring to loop I. This initial interaction is stimulated by the presence of the loop U residue in the 5'-rUUGGCG-3' motif. These results indicate that the competition between the two RNA-RNA interactions at the specific site is a novel regulatory mechanism for establishing the constant level of repZ expression and thus copy number.  相似文献   

6.
7.
We identified a 1,845-base-pair sequence that contains essential information for the autonomous replication and regulation of the 93-kilobase-pair IncI alpha group ColIb-P9 plasmid. Biochemical and genetic analyses revealed that this sequence specifies at least two structural genes, designated repZ and inc. The repZ gene encodes a protein with a molecular weight of 39,000, which probably functions as an initiator for the ColIb-P9 replicon. The inc gene that phenotypically governs the incompatibility encodes an RNA with a size of about 70 bases. This small RNA acts in trans to repress the expression of repZ, thereby functioning to maintain a constant copy number of the ColIb-P9 replicon in host cells.  相似文献   

8.
Translation in plants is highly cap dependent, and the only plant mRNAs known to naturally lack a cap structure (m(7)GpppN) are viral in origin. The genomic RNA of tobacco etch virus (TEV), a potyvirus that belongs to the picornavirus superfamily, is a polyadenylated mRNA that is naturally uncapped and yet is a highly competitive mRNA during translation. The 143-nucleotide 5' leader is responsible for conferring cap-independent translation even on reporter mRNAs. We have carried out a deletion analysis of the TEV 5' leader to identify the elements responsible for its regulatory function and have identified two centrally located cap-independent regulatory elements (CIREs) that promote cap-independent translation. The introduction of a stable stem-loop structure upstream of each element demonstrated that CIRE-1 is less 5' end dependent in function than CIRE-2. In a dicistronic mRNA, the presence of the TEV 5' leader sequence in the intercistronic region increased expression of the second cistron, suggesting that the viral sequence can function in a 5'-distal position. Interestingly, the introduction of a stable stem-loop upstream of the TEV leader sequence or upstream of either CIRE in dicistronic constructs markedly increased their regulatory function. These data suggest that the TEV 5' leader contains two elements that together promote internal initiation but that the function of one element, in particular, is facilitated by proximity to the 5' end.  相似文献   

9.
10.
Nucleotide sequence of an immediate-early frog virus 3 gene.   总被引:4,自引:2,他引:2       下载免费PDF全文
  相似文献   

11.
K Schneider  C F Beck 《Gene》1988,74(2):559-563
  相似文献   

12.
In eubacteria, base pairing between the 3' end of 16S rRNA and the ribosome-binding site of mRNA is required for efficient initiation of translation. An interaction between the 18S rRNA and the mRNA was also proposed for translation initiation in eukaryotes. Here, we used an antisense RNA approach in vivo to identify the regions of 18S rRNA that might interact with the mRNA 5' untranslated region (5' UTR). Various fragments covering the entire mouse 18S rRNA gene were cloned 5' of a cat reporter gene in a eukaryotic vector, and translation products were analyzed after transient expression in human cells. For the largest part of 18S rRNA, we show that the insertion of complementary fragments in the mRNA 5' UTR do not impair translation of the downstream open reading frame (ORF). When translation inhibition is observed, reduction of the size of the complementary sequence to less than 200 nt alleviates the inhibitory effect. A single fragment complementary to the 18S rRNA 3' domain retains its inhibitory potential when reduced to 100 nt. Deletion analyses show that two distinct sequences of approximately 25 nt separated by a spacer sequence of 50 nt are required for the inhibitory effect. Sucrose gradient fractionation of polysomes reveals that mRNAs containing the inhibitory sequences accumulate in the fractions with 40S ribosomal subunits, suggesting that translation is blocked due to stalling of initiation complexes. Our results support an mRNA-rRNA base pairing to explain the translation inhibition observed and suggest that this region of 18S rRNA is properly located for interacting with mRNA.  相似文献   

13.
14.
15.
We previously showed that a 9-nucleotide sequence from the 5' leader of the Gtx homeodomain mRNA facilitates translation initiation by base pairing to 18S rRNA. These earlier studies tested the Gtx element in isolation; we now assess the physiological relevance of this element in the context of two natural mRNAs that contain this sequence in their 5' leaders, Gtx itself and FGF2 (fibroblast growth factor 2). 2'-O-Methyl-modified RNA oligonucleotides were employed to block mRNA-rRNA base pairing by targeting either the Gtx-binding site in 18S rRNA or Gtx elements in recombinant mRNAs containing the Gtx or FGF2 5' leaders linked to a reporter cistron. Studies in cell-free lysates and transfected COS-7 cells showed that translation of mRNAs containing the Gtx or FGF2 5' leaders was decreased by > 50% when oligonucleotides targeting either the rRNA or mRNA were used. Specificity was demonstrated by showing that translation of the recombinant mRNAs was unaffected by control oligonucleotides. In addition, the specific oligonucleotides did not affect the translation of recombinant mRNAs in which the Gtx elements were mutated. Experiments performed using constructs containing Gtx and FGF2 5' leader and coding sequences ruled out possible effects of the reporter cistron. Furthermore, two-dimensional gel electrophoresis revealed that the oligonucleotides used in this study had little overall effect on the proteomes of cells transfected with these oligonucleotides. This study demonstrates that mRNA-rRNA base pairing affects the expression of two cellular mRNAs and describes a new approach for investigating putative mRNA-rRNA base pairing interactions in mammalian cells.  相似文献   

16.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

17.
Nagase T  Nishio SY  Itoh T 《Plasmid》2007,58(3):249-260
Translation initiation of mRNA encoding the Rep protein of the ColE2 plasmid required for initiation of plasmid DNA replication is fairly efficient in Escherichia coli cells despite the absence of a canonical Shine-Dalgarno sequence. To define sequences and structural elements responsible for translation efficiency of the Rep mRNA, a series of rep-lacZalpha translational fusions bearing various mutations in the region encoding the leader region of the Rep mRNA was generated and tested for the translation activity by measuring the beta-galactosidase activity. We showed that the region rich in A and U between the stem-loop II structure and GA cluster sequence, formation of the stem-loop II structure, but not its sequence, and the region between the GA cluster sequence and initiation codon are important along with the GA cluster sequence for efficient translation of the Rep protein. The existence of these important regions in the leader region of the Rep mRNA may explain the mechanism of inhibition of the Rep protein translation by an antisense RNA (RNAI), which is complementary to the leader region.  相似文献   

18.
19.
Ribosomal proteins L10 and L12 are encoded in the L10 operon, situated at position 89.5 min on the Escherichia coli genetic map, and are able to regulate their own translation. The two proteins form a L10-L12 complex that is able to bind specifically to the leader sequence of the L10 operon mRNA and prevent translation. We show that the leader sequence: (i) is required for the translation of mRNA into L10 and L12 proteins; and (ii) contains a unique binding site for the inhibitory L10-L12 complex. We suggest that a specific secondary structure of the leader RNA is required for translation. When this structure is perturbed by L10-L12 binding, by deletion, or point mutations, translation is inhibited. The block on the synthesis of L10 and L12 can presumably be removed by the incorporation of the inhibitory L10-L12 complex into assembling 50S ribosome subunits. We observed that rRNA prevents the binding of L10-L12 to the mRNA. Furthermore, we have identified extended sequence homologies within the 23S rRNA and L10 leader region RNA. The L10-L12 binding site on the mRNA includes part of the homologous sequences.  相似文献   

20.
Induction of translation of the ermC gene product in Bacillus subtilis occurs upon exposure to erythromycin and is a result of ribosome stalling in the ermC leader peptide coding sequence. Another result of ribosome stalling is stabilization of ermC mRNA. The effect of leader RNA secondary structure, methylase translation, and leader peptide translation on induced ermC mRNA stability was examined by constructing various mutations in the ermC leader region. Analysis of deletion mutations showed that ribosome stalling causes induction of ermC mRNA stability in the absence of methylase translation and ermC leader RNA secondary structure. Furthermore, deletions that removed much of the leader peptide coding sequence had no effect on induced ermC mRNA stability. A leader region mutation was constructed such that ribosome stalling occurred in a position upstream of the natural stall site, resulting in induced mRNA stability without induction of translation. This mutation was used to measure the effect of mRNA stabilization on ermC gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号