首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfide bonds are normally formed after a polypeptide has been exported from the reducing environment of the cytoplasm into a more oxidizing compartment, such as the bacterial periplasm. Recently, we showed that in Escherichia coli trxB gor mutants, in which the reduction of thioredoxin and glutathione is impaired, the redox potential of the cytoplasm becomes comparable to that of the mammalian endoplasmic reticulum, thus allowing the formation of disulfide bonds in certain complex proteins (P. H. Bessette et al., 1999, Proc. Natl. Acad. Sci. USA 96, 13703-13708]. Here, we investigate the expression of a Fab antibody fragment in the bacterial cytoplasm. The effect of coexpressing cytoplasmic chaperones (GroEL/ES, trigger factor, DnaK/J), as well as signal sequenceless versions of periplasmic chaperones (DsbC and Skp), was examined. Skp coexpression was shown to have the most significant effect (five- to sixfold increase) on the yield of correctly folded Fab. A maximum yield of 0.8 mg Fab/L/OD(600) Fab was obtained, indicating that cytoplasmic expression may be a viable alternative for the preparative production of antibody fragments.  相似文献   

2.
Recombinant antibody fragments represent useful tools for cancer diagnosis and therapy. Aberrant expression of the HER2 receptor is implicated in metastatic breast and ovary cancers, two malignancies with a high prevalence in young women. In this study, we focussed on a single-chain fragment of variable antibody regions specific for HER2 (scFv800E6) that can be expressed in a functional form in the cytoplasm of Escherichia coli. ScFv800E6 was extracted from bacterial cultures following induction at different temperatures and purified. The yield of both soluble and insoluble forms was measured. We found that scFv800E6 was functional when expressed in the soluble fraction in the bacteria cytosol. In addition, scFv800E6 extracted from inclusion bodies was easily refolded and largely recovered its functionality. Thus, scFv800E6 is intrinsically capable of efficient and functional folding in a reducing environment and represents one of the few described antibody fragments with a framework well adapted for cytoplasmic expression.  相似文献   

3.

Background  

The connection of the variable part of the heavy chain (VH) and and the variable part of the light chain (VL) by a peptide linker to form a consecutive polypeptide chain (single chain antibody, scFv) was a breakthrough for the functional production of antibody fragments in Escherichia coli. Being double the size of fragment variable (Fv) fragments and requiring assembly of two independent polypeptide chains, functional Fab fragments are usually produced with significantly lower yields in E. coli. An antibody design combining stability and assay compatibility of the fragment antigen binding (Fab) with high level bacterial expression of single chain Fv fragments would be desirable. The desired antibody fragment should be both suitable for expression as soluble antibody in E. coli and antibody phage display.  相似文献   

4.
Monoclonal antibodies 4B1 and 5F7 bind to distinct, nonoverlapping epitopes in the lac carrier protein. By use of immunofluorescence microscopy and radiolabeled monoclonal antibodies and Fab fragments, it is shown that both 4B1 and 5F7 bind to spheroplasts and to right-side-out vesicles, but only to a small extent to inside-out vesicles. Clearly, therefore, the lac carrier protein has an asymmetric orientation within the cytoplasmic membrane of Escherichia coli, and both epitopes are located on the periplasmic surface. In right-side-out vesicles, radiolabeled 4B1 binds with a stoichiometry of 1 mol of antibody per 2 mol of lac carrier protein, while radiolabeled 4B1 Fab fragments bind 1:1. Importantly, the intact antibody and its Fab fragments bind to proteoliposomes reconstituted with purified lac carrier protein with a stoichiometry very similar to that observed in right-side-out membrane vesicles. Thus, it seems highly likely that the orientation of the lac carrier protein in the reconstituted system is similar to that in the bacterial cytoplasmic membrane, at least with respect to 4B1 epitope.  相似文献   

5.
Bacterial expression and purification of recombinant bovine Fab fragments.   总被引:1,自引:0,他引:1  
We have previously described a recombinant phagemid expression vector, pComBov, designed for the production of native sequence bovine monoclonal antibodies (mAb) generated by antibody phage display. Bovine mAb Fab fragments isolated from libraries constructed using pComBov in Escherichia coli strain XL1-Blue, which is routinely used for antibodies expressed on the surface of phage, were expressed at very low yields. Therefore, a study was undertaken to determine optimal growth conditions for maximal expression of bovine Fab fragments in E. coli. By varying the E. coli strain, and the temperature and length of the culture growth, we were able to substantially increase the yield of soluble Fab fragments. A high yield of Fab fragments was found in the culture growth medium, which enabled us to devise a rapid and simple single-step method for the purification of native (nondenatured) Fabs based on immobilized metal affinity chromatography against a six-histidine amino acid carboxyl-terminal extension of the heavy-chain constant region. Using these methods we were able to express and purify antigen-specific bovine Fab fragments from E. coli.  相似文献   

6.
Intracellular expression of recombinant antibodies (intrabodies) allows to interfere with the functions of oncogenic or viral molecules expressed in different cell compartments and has therefore a vast clinical potential in therapy. Although the use of phage-display libraries has made it possible to select Fab or single chain Fv (scFv) antibody fragments usable for intracellular targeting, a major source of recombinant antibodies for therapeutic use still remains hybridoma B cells producing well-characterized monoclonal antibodies (mAbs). However, the cloning and the intracellular expression of antibody fragments derived from mAbs can be markedly hampered by a number of technical difficulties that include failure of cloning functional variable regions as well as lack of binding of the antibody fragments to the targeted molecule in an intracellular environment. We discuss herein various molecular methods that have been developed to generate functional recombinant antibody fragments usable as anti-tumor triggering agents when expressed in tumor cells. Such antibodies can neutralize or modify the activity of oncogenic molecules when addressed in specific subcellular compartments and/or they can be used to trigger anti-tumor immunity when expressed on tumor cell surface.  相似文献   

7.
We report the design, construction and use of an antibody bacteriophage display library built on the scaffold of a single-chain variable fragment (scFv) previously proven to be functionally expressed in the reducing environment of both bacterial and plant cytoplasm and endowed with intrinsic high thermodynamic stability. Four amino acid residues of the third hypervariable loop (CDR3) of both VH and VL were combinatorially mutated, generating a repertoire of approximately 5x10(7) independent scFvs, cloned in a phagemid vector. The ability of the antibody phage library to yield specific binders was tested by biopanning against several antigens. Successful selection of fully active scFvs was obtained, confirming the notion that combinatorial mutagenesis of few amino acid residues centrally located in the antigen-binding site is sufficient to provide binding specificities against virtually any target. High yields of both soluble and phage antibodies were obtained in Escherichia coli. Maintenance of the cognate scFv antibody stability in the newly selected scFv fragments was demonstrated by guanidinium chloride denaturation/renaturation studies and by soluble antibody expression in the bacterial cytoplasm. The antibody library described here allows the isolation of new stable binding specificities, potentially exploitable as immunochemical reagents for intracellular applications.  相似文献   

8.
Functional expression of catalytic antibodies in the cytoplasm of E. coli is potentially of great interest in searching for new catalysts by genetic selection. Herein, a catalytic antibody single chain Fv (ScFv) 14D9, which catalyzes a highly enantioselective protonation, was expressed as a NusA fusion protein under the T7 promoter. A functional disulfide-containing ScFv fusion protein was obtained in the oxidizing environment of bacterial cytoplasm. The 14D9 ScFv could not be overexpressed alone without NusA fusion. The highly soluble NusA protein most likely retards aggregate formation of ScFv and indirectly supports correct folding and disulfide bridge formation in the fusion construct ScFv-NusA. The ScFv-NusA fusion product shows highly enantioselective, specific, hapten inhibited catalytic activity comparable to its parent monoclonal antibody, 14D9. The NusA fusion method might be generally helpful for functional antibody expression in vivo and for the new development of biocatalysts by genetic selection.  相似文献   

9.
The formation of the disulfide bonds in the variable domains VH and VL of the antibody McPC603 was found to be essential for the stability of all antigen binding fragments investigated. Exposure of the Fv fragment to reducing conditions in vitro resulted in irreversible denaturation of both VH and VL. In vitro refolding of the reduced Fv fragment was only possible when the disulfide bonds were allowed to form under oxidizing conditions. The analysis of a series of mutants of the Fv fragment, the Fab fragment and the single-chain Fv fragment, all secreted into the periplasm of Escherichia coli, in which each of the cysteine residues of the variable domains was replaced by a series of other amino acids, showed that functional antigen binding fragments required the presence of both the disulfide bond in VH and the one in VL. These results were also used to devise an alternative expression system based on the production of insoluble fusion proteins consisting of truncated beta-galactosidase and antibody domains, enzymatic cleavage, and refolding and assembly in vitro. This strategy should be useful for providing access to unstable antibody domains and fragments.  相似文献   

10.
Despite the well-known crucial role of intradomain disulfide bridges for immunoglobulin folding and stability, the single-chain variable fragment of the anti-viral antibody F8 is functionally expressed when targeted to the reducing environment of the plant cytoplasm. We show here that this antibody fragment is also functionally expressed in the cytoplasm of Escherichia coli. A gel shift assay revealed that the single-chain variable fragment (scFv) accumulating in the plant and bacterial cytoplasm bears free sulfhydryl groups. Guanidinium chloride denaturation/renaturation studies indicated that refolding occurs even in a reducing environment, producing a functional molecule with the same spectral properties of the native scFv(F8). Taken together, these results suggest that folding and functionality of this antibody fragment are not prevented in a reducing environment. This antibody fragment could therefore represent a suitable framework for engineering recombinant antibodies to be targeted to the cytoplasm.  相似文献   

11.
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.Key words: cell-free protein synthesis, Fab antibody, aglycosylated antibodies, HER2, trastuzumab  相似文献   

12.
Antibody phage display is a key technology for the generation of recombinant (human) antibodies for research, diagnostics and therapy. Most antibody fragments can only be folded correctly in the oxidizing environment of the periplasm of Escherichia coli. A multitude of leader peptides has been used for secretion of antibody::pIII fusion proteins into the periplasm, but a systematic study of their impact on the performance of antibody phage display systems has not been reported so far. In this work we have analysed the influence of various leader peptides on antibody phage display efficiency and production yields of soluble antibody fragments. Four leader peptides using the Sec pathway (PelB, OmpA, PhoA and pIII) and three using the SRP pathway (DsbA, TorT and TolB) were compared. Both pathways are compatible with antibody phage display and the production of soluble antibody fragments. The applicability of the SRP pathway to antibody phage display and the production of functional scFvs is shown here for the first time.  相似文献   

13.
Camelidae single domain antibodies (VHHs) have structural and binding features that render them suitable alternatives to conventional IgG antibodies. VHHs are usually easier to produce as recombinant proteins than other antibody fragments. However, for some of the biotechnological applications for which they have been proposed, such as immunochromatography and assisted-crystallography, large amounts of purified antibodies are necessary, whereas some VHH-fusions with common tags such as GFP and SNAP are poorly expressed in the bacterial periplasm. Here we have shown that the co-expression of Erv1p sulfhydryl oxidase resulted in an astonishing yield increase of VHH-SNAP constructs expressed in the bacterial cytoplasm. The resulting recombinant antibodies were also more stable than the antibodies produced using the same plasmid, but in wild-type bacteria. Using this approach, it was possible to obtain tens of milligram of purified fusion antibodies using a basic flask fermentation protocol. Therefore, the described method represents a valid solution to produce inexpensively large amounts of single domain antibodies for in vitro applications and we expect it will be suitable for the production of other antibody fragments.  相似文献   

14.
《MABS-AUSTIN》2013,5(2):217-225
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.  相似文献   

15.
The human combinatorial antibody library Fab 1 (HuCAL-Fab 1) was generated by transferring the heavy and light chain variable regions from the previously constructed single-chain Fv library (Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., W?lle, J., Plückthun, A., and Virnek?s, B. (2000) J. Mol. Biol. 296, 57-86), diversified in both complementarity-determining regions 3 into a novel Fab display vector, yielding 2.1 x 10(10) different antibody fragments. The modularity has been retained in the Fab display and screening plasmids, ensuring rapid conversion into various antibody formats as well as antibody optimization using prebuilt maturation cassettes. HuCAL-Fab 1 was challenged against the human fibroblast growth factor receptor 3, a potential therapeutic antibody target, against which, to the best of our knowledge, no functional antibodies could be generated so far. A unique screening mode was designed utilizing recombinant functional proteins and cell lines differentially expressing fibroblast growth factor receptor isoforms diversified in expression and receptor dependence. Specific Fab fragments with subnanomolar affinities were isolated by selection without any maturation steps as determined by fluorescence flow cytometry. Some of the selected Fab fragments completely inhibit target-mediated cell proliferation, rendering them the first monoclonal antibodies against fibroblast growth factor receptors having significant function blocking activity. This study validates HuCAL-Fab 1 as a valuable source for the generation of target-specific antibodies for therapeutic applications.  相似文献   

16.
《MABS-AUSTIN》2013,5(1):204-218
Today, most approved therapeutic antibodies are provided as immunoglobulin G (IgG), whereas small recombinant antibody formats are required for in vitro antibody generation and engineering during drug development. Particularly, single chain (sc) antibody fragments like scFv or scFab are well suited for phage display and bacterial expression, but some have been found to lose affinity during conversion into IgG.

In this study, we compared the influence of the antibody format on affinity maturation of the CD30-specific scFv antibody fragment SH313-F9, with the overall objective being improvement of the IgG. The variable genes of SH313-F9 were randomly mutated and then cloned into libraries encoding different recombinant antibody formats, including scFv, Fab, scFabΔC, and FabΔC. All tested antibody formats except Fab allowed functional phage display of the parental antibody SH313-F9, and the corresponding mutated antibody gene libraries allowed isolation of candidates with enhanced CD30 binding. Moreover, scFv and scFabΔC antibody variants retained improved antigen binding after subcloning into the single gene encoded IgG-like formats scFv-Fc or scIgG, but lost affinity after conversion into IgGs. Only affinity maturation using the Fab-like FabΔC format, which does not contain the carboxy terminal cysteines, allowed successful selection of molecules with improved binding that was retained after conversion to IgG. Thus, affinity maturation of IgGs is dependent on the antibody format employed for selection and screening. In this study, only FabΔC resulted in the efficient selection of IgG candidates with higher affinity by combination of Fab-like conformation and improved phage display compared with Fab.  相似文献   

17.
Directed evolution is an exceptionally powerful tool that uses random mutant library generation and screening techniques to engineer or optimize functions of proteins. One class of proteins for which this process is particularly effective is antibodies, where properties such as antigen specificity and affinity can be selected to yield molecules with improved efficacy as molecular labels or in potential therapeutics. Typical antibody structure includes disulfide bonds that are required for stability and proper folding of the domains. However, these bonds are unable to form in the reducing environment of the cytoplasm, stymieing the effectiveness of optimized antibodies in many research applications. We have removed disulfide-forming cysteine residues in a single chain antibody fluorogen-activating protein (FAP), HL4, and employed directed evolution to select a derivative that is capable of activity in the cytoplasm. A subsequent round of directed evolution was targeted at increasing the overall brightness of the fluoromodule (FAP–fluorogen complex). Ultimately, this approach produced a novel FAP that exhibits strong activation of its cognate fluorogen in the reducing environment of the cytoplasm, significantly expanding the range of applications for which fluoromodule technology can be utilized.  相似文献   

18.
Recombinant antibody fragments have a wide range of applications from research to diagnostics and therapy. Of special interest are small fragments like fragment antigen binding (Fab) or single chain fragment variables (scFv) fragments as they can be produced inexpensively in bacterial expression systems. However, recombinant production efficiencies from established production hosts vary significantly leading to inadequate yields. Gene sequences that have been synthetically adapted to match the codon preferences and respective genomic tRNA pool of the host have been used to improve yields but cannot resolve the principal problem. The development of inducible broad host range scFv expression plasmid constructs leads the way to an easy and efficient screening method for the identification of the optimal bacterial expression host.  相似文献   

19.
Single-chain variable fragment (scFv) antibodies have great potential for a range of applications including as diagnostic and therapeutic agents. However, production of scFvs is challenging because proper folding and activity depend on the formation of two intrachain disulfide bonds that do not readily form in the cytoplasm of living cells. Functional expression in bacteria therefore involves targeting to the more oxidizing periplasm, but yields in this compartment can be limiting due to secretion bottlenecks and the relatively small volume compared to the cytoplasm. In the present study, we evaluated an anti-HER2 scFv, which is specific for human epidermal growth receptor 2 (HER2) overexpressed in breast cancer, for functional expression in the cytoplasm of Escherichia coli strains BL21(DE3) and SHuffle T7 Express, the latter of which is genetically engineered for cytoplasmic disulfide bond formation. Specifically, we observed much greater solubility and binding activity with SHuffle T7 Express cells, which likely resulted from the more oxidative cytoplasm in this strain background. We also found that SHuffle T7 Express cells were capable of supporting high-level soluble production of anti-HER2 scFvs with intact disulfide bonds independent of variable domain orientation, providing further evidence that SHuffle T7 Express is a promising host for laboratory and preparative expression of functional scFv antibodies.  相似文献   

20.
Recently antibody fragments have been expressed in a functional form from bacteria. We have devised a simple method to detect the binding of antigen to antibody Fab fragments secreted by bacterial colonies. Bacteria harboring plasmid vectors that direct the secretion of Fab fragments into the bacterial periplasm are grown on one membrane. The secreted fragments are allowed to diffuse to a second "capture" membrane coated with anti-globulin, and are probed with antigen. Using enzyme or colloidal gold conjugates, the binding of antigen is detected on the second membrane as a colored spot. The colonies can be regrown on the first membrane, and the antigen binding signal on the second membrane is free of noise contributed by bacterial debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号