首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple bilayers of dimyristoyl phosphatidylcholine and potassium oleate were macroscopically oriented between silver-coated glass slides. These model membranes were subjected to an electric field of up to 105V · cm−1. The influence of the field on the molecular structure was monitored by ESR of cholestane and stearic acid spin labels and by NMR of the phosphorus atom in the phosphatidylcholine headgroup.It is concluded that the conformation of the headgroup is greatly affected while no influence on the structure and dynamics of the hydrocarbon chains can be detected. At electric fields above 104 V · cm−1, where structural effects are still reversible, spontaneous current fluctuations are observed. At fields above 105 V · cm−1, irreversible breakdown of the bilayer structure occurs.  相似文献   

2.
The structure and dynamics of phosphatidylcholine bilayers containing chlorophyll were studied by X-ray diffraction and absorption polarization spectroscopy in the form of hydrated orientated multilayers below the thermal phase transition of the lipid chains and by nuclear magnetic resonance in the form of single-wall vesicles above the thermal transition. Our results show that (a) chlorophyll is incorporated into the phosphatidylcholine bilayers with its porphyrin ring located anisotropically in the polar headgroup layer of the membrane and with its phytol chain penetrating in a relatively extended form between the phosphatidylcholine fatty acid chains in the hydrocarbon core of the mixed bilayer membrane and (b) the intramolecular anisotropic rotational dynamics of the host phosphatidylcholine molecules are significantly perturbed upon chlorophyll incorporation into the bilayer at all levels of the phosphatidylcholine structure. These dynamics for the host phosphatidylcholine fatty acids chains are qualitatively different from that of the incorporated chlorophyll phytol chains on a 10(-9)-10(-10)s time scale in the ideally mixed two-component bilayer.  相似文献   

3.
Proteins are subjected to electric fields both within the cell and during routine biochemical analysis. We have used atomistic molecular dynamics simulations to study conformational changes within three structurally diverse proteins subjected to high electric fields. At electric fields in excess of .5?V/nm, major structural changes were observed in all three proteins due to charge redistribution within the biomolecule. However, the electromechanical resilience was found to be highly dependent on the protein secondary structure, with α-helices showing a particularly high susceptibility to deformation by the applied electric field.  相似文献   

4.
Understanding exposure thresholds for the response of biological systems to extremely low frequency (ELF) electric and magnetic fields is a fundamental problem of long-standing interest. We consider a two-state model for voltage-gated channels in the membrane of an isolated elongated cell (Lcell = 1 mm; rcell = 25 micron) and use a previously described process of ionic and molecular flux rectification to set lower bounds for a threshold exposure. A key assumption is that it is the ability of weak physical fields to alter biochemistry that is limiting, not the ability of a small number of molecules to alter biological systems. Moreover, molecular shot noise, not thermal voltage noise, is the basis of threshold estimates. Models with and without stochastic resonance are used, with a long exposure time, texp = 10(4) s. We also determined the dependence of the threshold on the basal transport rate. By considering both spherical and elongated cells, we find that the lowest bound for the threshold is Emin approximately 9 x 10(-3) V m-1 (9 x 10(-5) V cm-1). Using a conservative value for the loop radius rloop = 0.3 m for induced current, the corresponding lower bound in the human body for a magnetic field exposure is Bmin approximately 6 x 10(-4) T (6 G). Unless large, organized, and electrically amplifying multicellular systems such as the ampullae of Lorenzini of elasmobranch fish are involved, these results strongly suggest that the biophysical mechanism of voltage-gated macromolecules in the membranes of cells can be ruled out as a basis of possible effects of weak ELF electric and magnetic fields in humans.  相似文献   

5.
Increased use of radio and microwave frequencies requires investigations of their effects on living organisms. Duckweed (Lemna minor L.) has been commonly used as a model plant for environmental monitoring. In the present study, duckweed growth and peroxidase activity was evaluated after exposure in a Gigahertz Transversal Electromagnetic (GTEM) cell to electric fields of frequencies 400, 900, and 1900 MHz. The growth of plants exposed for 2 h to the 23 V/m electric field of 900 MHz significantly decreased in comparison with the control, while an electric field of the same strength but at 400 MHz did not have such effect. A modulated field at 900 MHz strongly inhibited the growth, while at 400 MHz modulation did not influence the growth significantly. At both frequencies a longer exposure mostly decreased the growth and the highest electric field (390 V/m) strongly inhibited the growth. Exposure of plants to lower field strength (10 V/m) for 14 h caused significant decrease at 400 and 1900 MHz while 900 MHz did not influence the growth. Peroxidase activity in exposed plants varied, depending on the exposure characteristics. Observed changes were mostly small, except in plants exposed for 2 h to 41 V/m at 900 MHz where a significant increase (41%) was found. Our results suggest that investigated electromagnetic fields (EMFs) might influence plant growth and, to some extent, peroxidase activity. However, the effects of EMFs strongly depended on the characteristics of the field exposure.  相似文献   

6.
The application of an external electric field simultaneously with gamma irradiation to an aqueous suspension of phi X174 DNA (in the RFI form) is shown to increase significantly the number of strand breaks. Tritiated DNA allowed the number of single-strand breaks to be estimated from changes in the scintillation of electrophoretic gel band associated with the fastest mobility moiety. At 400 V (approximately 2400 V cm-1) the corrected increase (corrected for phoresis of DNA on the stainless-steel plates) in the G-value yield is 38%. The increase in damage with field strength appears to follow the increase in reduced dichroism. Dichroism results correspond at 400 V to approximately 10% of the maximum orientation. Our results support the conjecture that this significant increase in DNA-radiation interaction with an electric field is due to field-induced conformation changes in the molecule.  相似文献   

7.
Tan H  Liu J  Li J  Jiang X  Xie X  Zhong Y  Fu Q 《Biomacromolecules》2006,7(9):2591-2599
In this article, we designed and synthesized biomembrane mimicing segmented poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine (PC) side groups. To obtain these novel poly(carbonate urethane)s, a new diol with a long side chain fluorinated alkyl phosphatidylcholine polar headgroup (2-[2-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluoro-10-ethoxy-decyloxy-N-(2-hydroxy-1-hydroxymethyl-1-methyl-ethyl)-acetamide] phosphatidylcholine, HFDAPC) was first synthesized and characterized. Then a series of poly(carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups were synthesized using methylenebis(phenylene isocyanate) (MDI), poly(1,6-hexyl-1,5-pentyl carbonate) diol (PHPCD), 1,4-butandiol (BDO), and HFDAPC. The obtained fluorinated phosphatidylcholine poly(carbonate urethane)s (FPCPCU) possessed high molecular weight, narrower molecular weight distribution, and good mechanical properties as characterized by GPC and Instron, showing an increased hydrophilicity and a possible arrangement of surface structure as characterized by water contact angle. XPS results indicated that the phosphatidylcholine polar headgroups have been indeed pulled out to the surface with the help of the migration of the fluorinated side chain that was directly connected with the phosphatidylcholine polar headgroup. A preliminary result by protein adsorption and platelet adhesion experiments suggested that only 5 approximately 12.5 mol % phosphatidylcholine could be enough for good hemocompatibility. The current work demonstrates a new synthetic approach that can be used to bring the bioactive PC groups to the surface of the PC-containing polyurethanes more effectively.  相似文献   

8.
In dry films of bacteriorhodopsin-containing purple membranes from Halobacterium halobium the external electric field (10(4) -- 10(5) V . cm-1) induces the appearance of a product spectrally close to the initial intermediate of bacteriorhodopsin (BR) photochromic cycle (bathoform, K). This result and also preliminary data of the electret-thermal analysis of the preparations suggest that the dielectric polarization in chromophore-protein-lipid complexes might be an essential step of the primary stabilization of light energy in photo-bioenergetic processes.  相似文献   

9.
Power-frequency electric and magnetic fields are known to exhibit marked temporal variation, yet in the absence of clear biological indications, the most appropriate summary indices for use in epidemiologic studies are unknown. In order to assess the statistical patterns among candidate indices, data on 4383 worker-days for magnetic fields and 2082 worker-days for electric fields collected for the Electric and Magnetic Field Project for Electric Utilities using the EMDEX meter [Bracken (1990): Palo Alto, CA: Electric Power Research Institute] were analyzed. We examined correlations at the individual and job title group levels among indices of exposure to both electric and magnetic fields, including the arithmetic mean, geometric mean, median, 20th and 90th percentiles, time above lower cutoffs of 20 V/m and 0.2 μT, and time above higher cutoffs of 100 V/m and 2.0 μT. For both electric and magnetic fields, the arithmetic mean was highly correlated with the 90th percentile; moderately correlated with the geometric mean, median, and lower and higher cutoff scores; and weakly correlated with the 20th percentile. Electric and magnetic field indices were generally weakly correlated with one another. Rank-order correlation coefficients were consistently greater than product-moment correlation coefficients. Job title group summary scores showed higher correlations among electric field indices and magnetic field indices and between electric and magnetic field indices than was found for individual worker-days, with only the 20th percentile clearly independent of the others. These results suggest that individuals' exposures are adequately characterized by a measure of central tendency for electric and magnetic fields, such as the arithmetic or geometric mean, and an indicator of a lower threshold or cutoff for each field type, such as the 20th percentile or proportion of time above 20 V/m or 0.2 μT. A single measure of central tendency for each type of field appears to be adequate when exposures are assessed at the job title level. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Negative dielectrophoretic forces can effectively be used to trap cortical rat neurons. The creation of dielectrophoretic forces requires electric fields of high non-uniformity. High electric field strengths, however, can cause excessive membrane potentials by which cells may unrecoverably be changed or it may lead to cell death. In a previous study it was found that cells trapped at 3 Vtt/14 MHz did not change morphologically as compared to cells that were not exposed to the electric field. This study investigates the viability of fetal cortical rat neurons after being trapped by negative dielectrophoretic forces at frequencies up to 1 MHz. A planar quadrupole micro-electrode structure was used for the creation of a non-uniform electric field. The sinusoidal input signal was varied in amplitude (3 and 5 Vtt) and frequency (10 kHz-1 MHz). The results presented in this paper show that the viability of dielectrophoretically trapped postnatal cortical rat cells was greatly frequency dependent. To preserve viability frequencies above 100 kHz (at 3 Vtt) or 1 MHz (5 Vtt) must be used.  相似文献   

11.
Electrochemistry and polarization modulation Fourier transform infrared reflection absorption spectroscopy (PM-FTIRRAS) was employed to investigate fusion of small unilamellar vesicles of 1,2dioyl-sn-glycero-3-phosphatidyl choline (DOPC) onto the Au(111) electrode. Electrochemical studies demonstrated that the DOPC vesicles fuse and spread onto the gold electrode surface at small charge densities -8 microC cm(-2)相似文献   

12.
Serpersu and Tsong (Sepersu, E. H., and Tsong, T. Y. (1983) J. Membr. Biol. 74, 191-201; (1984) J. Biol. Chem. 259, 7155-7162) reported activation of a K+ pumping mode of (Na,K)-ATPase by an oscillating electric field (20 V/cm, 1.0 kHz). Their attempts to activate Na+ pumping at the same frequency were unsuccessful. We report here activation of a Na+ pumping mode with an oscillating electric field of the same strength as used previously (20 V/cm) but at a much higher frequency (1.0 MHz). At 3.5 degrees C and the optimal amplitude and frequency, the field-induced, ouabain-sensitive (0.2 mM ouabain incubated for 30 min) Rb+ influx ranged between 10 and 20 amol/red blood cell/h, and the corresponding Na+ efflux ranged between 15 and 30 amol/red blood cell/h, varying with the source of the erythrocytes. No Rb+ efflux nor Na+ influx was stimulated by the applied field in the frequency range 1 Hz to 10 MHz. These results indicate that only those transport modes that require ATP splitting under the physiological condition were affected by the applied electric fields, although the field-stimulated Rb+ influx and Na+ efflux did not depend on the cellular ATP concentration in the range 5 to 800 microM. Computer simulation of a four-state enzyme electroconformationally coupled to an alternating electric field (Tsong, T. Y., and Astumian, R. D. (1986) Bioelectrochem. Bioenerg. 15, 457-476; Tsong, T. Y. (1990) Annu. Rev. Biophys. Biophys. Chem. 19, 83-106) reproduced the main features of the above results.  相似文献   

13.
The structure and dynamics of phosphatidylcholine bilayers containing chlorophyll were studied by X-ray diffraction and absorption polarization spectroscopy in the form of hydrated orientated multilayers below the thermal phase transition of the lipid chains and by nuclear magnetic resonance in the form of single-wall vesicles above the thermal transition. Our results show that (a) chlorophyll is incorporated into the phosphatidylcholine bilayers with its porphyrin ring located anisotropically in the polar headgroup layer of the membrane and with its phytol chain penetrating in a relatively extended form between the phosphatidylcholine fatty acid chains in the hydrocarbon core of the mixed bilayer membrane and (b) the intramolecular anisotropic rotational dynamics of the host phosphatidylcholine molecules are significantly perturbed upon chlorophyll incorporation into the bilayer at all levels of the phosphatidylcholine structure. These dynamics for the host phosphatidtlcholine fatty acid chains are qualitatively different from that of the incorporated chlorophyll phytol chains on a 10?9 ? 10?10s time scale in the ideally mixed two-component bilayer.  相似文献   

14.
15.
The effect of external electric fields on photo-accumulations of Phormidium uncinatum in light traps has been studied. 1. In direct current fields the phobic reaction of trichoms leaving the light field is not impaired if a voltage of 2.5 V is not exceeded. With voltages between 3 and 7 V the trichoms are motile, but phobic reactions are cancelled, provided the organisms are oriented more or less parallel to the electric field lines. Higher voltages cause the algae to die within minutes. 2. Only alternating current fields of very low frequencies (less than or equal 10(-3) Hz) have similar effects. Sine waves are more effective than triangular ones, but less than square waves. A hypothesis is proposed according to which sensory transduction of photophobic reactions in blue-green algae is mediated by changes in the endogenous membrane potential. This potential might be interfered with by the application of an external electric field, thus inhibiting photophobic reactions.  相似文献   

16.
Vibrational Raman spectra of the solid and gel phases of bovine brain cerebrosides and the component fractions, kerasin and phrenosin, provide conformational information for these glycosphingolipids in bilayer systems. The carbon-carbon stretching mode profiles (1,150-1,000 cm-1) indicate that at 22 degrees C the alkyl chains assume an almost all-trans arrangement. These spectral data, combined with those from the C-H stretching region (3,050-2,800 cm-1), show that phrenosin forms the most highly ordered polycrystalline solid and kerasin the most ordered gel phase. The conformation of the unsaturated, 24-carbon acyl chains is monitored independently by a skeletal stretching mode at 1,112 cm-1. The alkyl chains in the kerasin and phrenosin gels are sufficiently extended to allow interdigitation of the 24-carbon acyl chains across the midplane of the bilayer. The amide I vibrational mode occurs at a lower frequency in solid phrenosin than kerasin, a shift consistent with stronger hydrogen bounding. This band is broadened and shifted to higher frequencies, however, in the phrenosin gel phase. In both the solid and gel phases natural cerebroside exhibits a composite amide I mode. The disruptive effects on cerebroside chain packing and headgroup orientation arising from mixing with dimyristoyl phosphatidylcholine are examined. Vibrational data for cerebroside are also compared to those for ceramide, sphingosine, and distearoyl phosphatidylcholine structures. Spectral interpretations are discussed in terms of calorimetric and X-ray structural data.  相似文献   

17.
The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force field produces the chain inequivalence with sn-1 as leading chain that is characteristic of glycerolipid packing in fluid bilayers. The exposure and high partial charge of the backbone carbonyls in Berger lipids leads to artifactual binding of Na+ ions reported in the literature. Both force fields predict coupled, near-symmetrical distributions of headgroup dihedral angles, which is compatible with models of interconverting mirror-image conformations used originally to interpret NMR order parameters. The Berger force field produces rotamer populations that correspond to the headgroup conformation found in a phosphatidylcholine lipid bilayer crystal, whereas CHARMM36 rotamer populations are closer to the more relaxed crystal conformations of phosphatidylethanolamine and glycerophosphocholine. CHARMM36 alone predicts the correct relative signs of the time-average headgroup order parameters, and reasonably reproduces the full range of NMR data from the phosphate diester to the choline methyls. There is strong motivation to seek further experimental criteria for verifying predicted conformational distributions in the choline headgroup, including the 31P chemical shift anisotropy and 14N and CD3 NMR quadrupole splittings.  相似文献   

18.
The action on intracellular cyclic AMP (cAMP) of therapeutically used 4000-Hz electric fields was investigated and compared with 50-Hz data. Cultured mouse fibroblasts were exposed for 5 minutes to 4000-Hz sine wave internal electric fields between 3 mV/m and 30 V/m applied within culture medium. A statistically significant decrease in cellular cAMP concentration relative to unexposed cells was observed for fields higher than 10 mV/m. The drop in cAMP was most pronounced at lower field strengths (71 % of controls at 30 mV/m) and tended to disappear at higher field strengths. An increase of cAMP content was observed with 50-Hz electric fields, as was also the case when 4000-Hz fields were modulated with certain low frequencies.  相似文献   

19.
Electroporation for DNA transfection generally uses short intense electric pulses (direct current of kilovolts per centimeter, microseconds to milliseconds), or intense dc shifted radio-frequency oscillating fields. These methods, while remarkably effective, often cause death of certain cell populations. Previously it was shown that a completely reversible, high ionic permeation state of membranes could be induced by a low-frequency alternating electric field (ac) with a strength one-tenth, or less, of the critical breakdown voltage of the cell membrane (Teissie, J., and T. Y. Tsong. 1981. J. Physiol. (Paris). 77:1043-1053). We report the transfection of E. coli (JM105) by plasmid PUC18 DNA, which carries an ampicillin-resistance gene, using low-amplitude, low-frequency ac fields. E. coli transformants confer the ampicillin resistance and the efficiency of the transfection can be conveniently assayed by counting colonies in a selection medium containing ampicillin. For the range of ac fields employed (peak-to-peak amplitude 50-200 V/cm, frequency 0.1 Hz-1 MHz, duration 1-100 s), 100% of the E. coli survived the electric field treatment. Transfection efficiencies varied with field strength and frequency, and as high as 1 x 10(5)/micrograms DNA was obtained with a 200 V/cm square wave, 1 Hz ac field, 30 s exposure time, when the DNA/cell ratio was 50-75. Control samples gave a background transfection of much less than 10/micrograms DNA. With a square wave ac field, the transfection efficiency showed a frequency window: the optimal frequency was 1 Hz with a 200 V/cm field, and was approximately 0.1 Hz with a 50 V/cm field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Bacteriorhodopsin of halobacterial purple membranes exhibits conformational flexibility in high electric field pulses (1-30 x 10(5) V m(-1), 1-100 micros). High-field electric dichroism data of purple membrane suspensions indicate two kinetically different structural transitions within the protein; involving a rapid (approximately 1 micros) concerted change in the orientation of both retinal and tyrosine and/or tryptophan side chains concomitant with alterations in the local protein environment of these chromophores. as well as slower changes (approximately 100 micros) of the microenvironment of aromatic amino acid residues concomitant with pK changes in at least two types of proton-binding sites. Light scattering data are consistent with the maintenance of the random distribution of the membrane discs within the short duration of the applied electric fields. The kinetics of the electro-optic signals and the steep dependence of the relaxation amplitudes on the electric field strength suggest a saturable induced-dipole mechanism and a rather large reaction dipole moment of 1.1 x 10(-25) C m ( = 3.3 x 10(4) debye) per cooperative unit at E = 1.3 x 10(5) V m(-1), which is indicative of appreciable cooperativity in the probably unidirectional transversal displacement of ionic groups on the surfaces of and within the bacteriorhodopsin proteins of the membrane lattice. The electro-optic data of bacteriorhodopsin are suggestive of a possibly general, induced-dipole mechanism for electric field-dependent structural changes in membrane transport proteins such as the gating proteins in excitable membranes or the ATP synthetases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号