首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of the 2,3-epoxybrassinosteroids secasterone and 2,3-diepisecasterone in the biosynthesis of castasterone has been demonstrated in seedlings of Secale cereale by LC-ESI-MS. Deuterated secasterone, upon administration to rye seedlings, was incorporated into castasterone and its 2beta- and 3beta-epimers. Administration of deuterated 2,3-diepisecasterone resulted in castasterone and 2-epicastasterone. A biosynthetic subpathway from typhasterol/teasterone via 2,3-epoxybrassinosteroid intermediates to castasterone is discussed.  相似文献   

2.
New analogues of 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one (15-ketosterol) with modified 17-chains [(22S,23S,24S)- and (22R,23R,24S)-3beta-hydroxy-24-methyl-22,23-oxido-5alpha-cholest-8(14)-en-15-ones and (22RS,23xi,24S)-24-methyl-5alpha-cholesta-3beta,22,23-triol-15-one] were synthesized from (22E,24S)-3beta-acetoxy-24-methyl-5alpha-cholesta-8(14),22-dien-15-one. The chiralities of their 22 and 23 centers were determined by NMR spectroscopy. The isomeric 22,23-epoxides effectively inhibited cholesterol biosynthesis in hepatoma Hep G2 cells (IC50 0.9 +/- 0.2 and 0.7 +/- 0.2 microM, respectively), and their activities significantly exceeded those of 15-ketosterol (IC50 4.0 +/- 0.5 microM), (22E,24S)-3beta-hydroxy-24-methyl-5alpha-cholesta-8(14),22-dien-15-one (IC50 3.1 +/- 0.4 microM), and the 3beta,22,23-triol synthesized (IC50 6.0 +/- 1.0 microM). The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

3.
Two new congeners (22R,23R,24S)-22,23-dihydroxy-24-methyl-5α-cholestan-3α-ol 2 and (22R,23R,24S)-22,23-dihydroxy-24-methyl-5α-cholestan-3-one 4 that are termed 6-deoxotyphasterol and 3-dehydro-6-eoxoteasterone, respectively, occur in relatively large amounts in the mature pollen of Cupressus arizonica. GC-MS, NMR spectroscopy, the reduction of 4 to 2, and the independent formation of 2 by the reduction of typhasterol were used to identify the new compounds. In the rice lamina bioassay, 2 showed weak activity. 6-Deoxocastasterone, castasterone, typha sterol, an epicastasterone-like compound, teasterone, 28-homocastasterone, 3-dehydroteasterone, brassinolide, and dolichosterone (or 24-epibrassinolide) were also present. These brassinosteroids were identified by co-chromatography with standards after being converted for an HPLC analysis of bioactive fractions. Six other peaks have not yet been assigned. 6-Deoxotyphasterol and 3-dehydro-6-deoxoteasterone should prove useful for exploring the early stages of the biosynthetic pathway(s) to brassinosteroids.  相似文献   

4.
(22R,23R,24S)-3α,5-Cyclo-22,23-diacetoxy-5a-ergostan-6-one (2b) is a new key intermediate of some naturally occurring brassinosteroids such as brassinolide (la), castasterone (lb), teasterone (lc) and typhasterol (Id). The cycloketone 2b was prepared in 10 steps via (22R,23R,24S)-6p- benzyloxy-3a,5-cyclo-22,23-dihydroxy-5a-ergostane (5) from stigmasterol. 2b was treated with a catalytic amount of /7-toluenesulfonic acid and sodium bromide to give an enone (7b), which was oxidized with osmium tetroxide and derived to give a 2a,3a-acetonide (8b). 8b was easily separated from its isomer by the use of silica gel column chromatography. 8b was oxidized with tri- fluoroperacetic acid and deacetylated to give la. 8b was deacetylated and deacetonized to give lb. 2b was treated with dilute sulfuric acid in acetic acid to give a 3/^-acetate (10). 10 was treated with sodium hydroxide to give lc. 2b was treated with hydrobromic acid to give a 3/i-bromide (12), which was treated with silver acetate to give a 3a-acetate (13). 13 was treated with sodium hydroxide to give Id.  相似文献   

5.
Four new analogs of 28-homocastasterone have been synthesized and completely characterized for the first time from stigmasterol. (22R, 23R,24S)-3beta-acetoxy-22,23-dihydroxy-5alpha-stigmastan+ ++-6-one (17), (22R,23R,24S)-3beta-bromo-22,23-dihydroxy-5alpha-stigmast an-6-one (18), (22R,23R,24S)-3beta-acetoxy-5,22, 23-trihydroxy-5alpha-stigmastan-6-one (20), and (22R,23R, 24S)-3beta-bromo-5,22,23-trihydroxy-5alpha-stigmastan-6-one (21), were obtained through a synthetic route based on regioselective Delta(5) epoxidation. Compounds 17 and 18, bearing a 5alphaH moiety, were prepared through a reductive opening of the 5beta,6beta epoxy precursor, and compounds 20 and 21, analogs with a 5alphaOH moiety were obtained by hydrolytic opening of a mixture of 5alpha,6alpha and 5beta,6beta epoxy precursors. Known compounds 19 and 22 were also obtained following the described synthetic routes, respectively. The new compounds were tested with the traditional auxin-like bioassay for brassinosteroids with 19 and 22 as standards. All compounds were comparatively evaluated for their inhibitory effect on the replication of DNA (HSV-1) virus.  相似文献   

6.
Synthesis of five novel Delta8(14)-15-ketosterols comprising modified side chains starting from ergosterol is described. Ergosteryl acetate was converted into (22E)-3beta-acetoxy-5alpha-ergosta-8(14),22-dien-15-one through three stages in 32% overall yield; further transformations of the product obtained led to (22E)-3beta-hydroxy-5alpha-ergosta-8(14),22-dien-15-one, (22S,23S)-3beta-hydroxy-22,23-oxido-5alpha-ergost-8(14)-en-15-one, (22R,23R)-3beta-hydroxy-22,23-oxido-5alpha-ergost-8(14)-en-15-one, (22R,23R)-5alpha-ergost-8(14)-en-15-on-3beta,22,23-triol and (22R,23R)-3beta-hydroxy-22,23-isopropylidenedioxy-5alpha-ergost-8(14)-en-15-one. New Delta8(14)-15-ketosterols were evaluated for their cytotoxicity and effects on sterol biosynthesis in human hepatoma Hep G2 cells in comparison with known 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one. Among the compounds tested, (22R,23R)-3beta-hydroxy-22,23-oxido-5alpha-ergost-8(14)-en-15-one was found to be the most potent inhibitor of sterol biosynthesis (IC(50)=0.6+/-0.2microM), whereas (22R,23R)-5alpha-ergost-8(14)-en-15-on-3beta,22,23-triol exhibited the highest cytotoxicity (TC(50)=12+/-3microM at a 24h incubation).  相似文献   

7.
Castasterone, [(22R,23R,24S)-2α,3α,22,23-tetrahydroxy-24-methyl-5α-cholestan-6-one] and typhasterol (2-deoxycastasterone) have been identified in purified extracts from the shoots of Sitka spruce (Picea sitchensis) by GC/MS.  相似文献   

8.
In this paper we describe the synthesis of two new fluorinated brassinosteroids: (22R,23R)-22,23-dihydroxy-3alpha-fluorostigmastan-6-one and (22R,23R)-22,23-dihydroxy-3beta-fluorostigmastan-6-one. Their bioactivities were evaluated in the rice lamina inclination test and compared with that of 28-homocastasterone, 28-homotyphasterol and 28-homoteasterone, possible biosynthetic precursors of 28-homobrassinolide. Results confirmed expected similarities between the biosynthesis of 24-ethylbrassinosteroids (named as the 28-homo series) and that described for 24-methylbrassinosteroids, and also indicated that these precursors might exhibit per se activities.  相似文献   

9.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R,25S)-3-O-(2,3-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-4-ene-3beta,6beta,8,15a,16beta,26-hexaol and (20R,24R,25S,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R,22E)-3-O-(2,4-di-O-methyl-beta-D-xylopyranosyl)-26,27-di-nor-24-methyl-5alpha-cholest-22-ene-3beta,4beta,6beta,8,15alpha,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-beta-D-xylopyranosyl)-5alpha-cholestan-3beta,4beta,6beta,8,15alpha,24-hexaol, were isolated from the two starfish species. (20R,24S)-Salpha-Cholestan-3beta,6beta,15alpha,24-tetraol and (20R,24S)-5alpha-cholestan-3beta,6beta,8,15alpha,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

10.
The occurrence of a new brassinosteroid of (22S,24R)-3β,22-dihydroxy-5α-ergostan-6-one, named cathasterone, was demonstrated by a GC-MS analysis in cultured cells of Catharanthus roseus. Its endogenous level was in the range of 2–4 ng/g fw, similar to those of brassinolide and castasterone. A feeding experiment with a deuterium-labeled substrate revealed that cathasterone was converted to teasterone and typhasterol. This is the first report of the natural occurrence of cathasterone as a brassinosteroid being the biosynthetic precursor of teasterone.  相似文献   

11.
(22E)-3beta-Hydroxysitosta-5,22-dien-7-one, (22R, 23R)-3beta,22,23-trihydroxysitost-5-en-7-one, and (22R, 23R)-3beta-hydroxy-22,23-isopropylidenedioxysitost-5-en-7-one were synthesized. The cytotoxicity and effects on cholesterol biosynthesis of the resulting 7-ketosterols, 7-ketocholesterol, and (22S,23S)-3beta-hydroxy-22,23-oxidositost-5-en-7-one were studied in hepatoblastoma Hep G2 cells.  相似文献   

12.
3 beta-Hydroxy-5 alpha-cholest-8(14)-en-15-one, a potent inhibitor of sterol biosynthesis, was incubated with rat liver mitochondrial preparations in the presence of NADPH. The following four major products were isolated and characterized by nuclear magnetic resonance and mass spectrometry: (25R)- and (25S)-3 beta,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one (4:1 ratio), 3 beta-hydroxy-15-oxo-5 alpha-cholest-8(14)-en-26-oic acid, and 3 beta,25-dihydroxy-5 alpha-cholest-8(14)-en-15-one. In addition, 3 alpha,26-dihydroxy-5 alpha-cholest-8(14)-en-15-one and 3 beta,24-dihydroxy-5 alpha-cholest-8(14)-en-15-one were identified as minor products by capillary gas chromatography-mass spectrometry.  相似文献   

13.
F F Knapp  G J Schroepfer 《Steroids》1975,26(3):339-357
Described herein are chemical syntheses of the following compounds: 4-methyl-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4,4-dimethyl-(24S)-24-ethyl-cholesta-5,22-dien-3-one, 4beta-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24R)-24-ethyl-5alpha-cholestan-3beta-ol, 4alpha-methyl-(24S)-24-ethyl-5alpha-cholest-22-en-3beta-ol, 4-methyl-6beta-bromo-(24S)-24-ethyl-cholesta-4,22-dien-3-one, 4alpha-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol, 4alpha,5alpha-epoxy-(24S)-24-ethyl-cholesta-4,22-dien-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholest-22-en-3beta,5alpha-diol, 4beta-methyl-5alpha-hydroxy-(24S)-24-ethyl-cholest-22-en-3beta-yl acetate, 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-yl acetate and 4beta-methyl-(24S)-24-ethyl-cholesta-5,22-dien-3beta-ol. Chromatographic, nuclear magnetic resonance, and mass spectral data are presented for the compounds under consideration.  相似文献   

14.
(22R,23R)-22,23-dihydroxystigmast-4-en-3-one, (22R,23R)-22,23-dihydroxystigmast-4-en-3,6-dione, (22R,23R)-3beta,5alpha,6beta,22,23-pentahydroxystigmastane, (22R,23R)-5alpha,6alpha-oxido-3beta,22,23-trihydroxystigmastane, (22R,23R)-5beta,6beta-oxido-3beta,22,23-trihydroxystigmastane, and (22R,23R)-3beta,6beta,22,23-tetrahydroxystigmast-4-ene were synthesized. Their cytotoxicities were comparatively studied using the MCF-7 line of carcinoma cells of human mammary gland and cells of human hepatoma of the Hep G2 line.  相似文献   

15.
B V Crist  C Djerassi 《Steroids》1983,42(3):331-343
The aim of this research was to establish the true composition of the 19-nor stanols isolated from the sponge Axinella polypoides and to determine accurate stereochemistry for each 19-nor stanol isolated. The following new 19-nor stanols were collected from this sponge: (i) (22E,24S)-24-methyl-19,27-bisnor-5 alpha-cholest-22-en-3 beta-ol, (ii) (22R,23R)-22,23-methylene-19-nor-5 alpha-cholestan-3 beta-ol, (iii) (24 xi)-24-propyl-19-nor-5 alpha-cholestan-3 beta-ol and (iv) (23R,24R)-23,24-dimethyl-19-nor-5 alpha-cholestan-3 beta-ol. The general structure and stereochemistry of all fifteen 19-nor stanols were established by analysis of the MS and H-NMR (300 MHz, CDCl3) data measured for each compound. The relative percentage of 19-nor stanols having delta 22 double bonds should be sufficient to suggest that this sponge could be a potential source of starting material for the partial synthesis of certain oral contraceptives, which also have a 19-nor steroid nucleus.  相似文献   

16.
Vernoguinoside, 16beta,22R;21,23S-diepoxy-3beta-O-beta-D-glucopyranosyloxy-21S,24-dihydroxy-5alpha-stigmasta-8,14-dien-28-one (1), a new stigmastane derivative, 16beta,22R;21,23S-diepoxy-21S,24-dihydroxy-5alpha-stigmasta-8,14-diene-3,28-dione (2) and two new sucrose esters, 1',3,3',4',6'-pentakis-O-(3-methylbutanoyl)-beta-D-fructofuranosyl alpha-D-glucopyranoside (3) and 1',2,3',6,6'-pentakis-O-(3-methylbutanoyl)-beta-D-fructofuranosyl alpha-D-glucopyranoside (4), have been isolated from the stem bark of Vernonia guineensis. The structures of the new compounds were determined on the basis of spectroscopic evidence.  相似文献   

17.
Kim HS  Kim DI 《Steroids》1999,64(12):844-848
(25R)-3beta,26-Dihydroxy-5alpha-cholest-8(14)-en-15-one (1) and (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2) were synthesized from (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-ene (4). Oxidation of 4 with CrO3-3,5-dimethylpyrazole at -20 degrees C gave (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-en-15-one (5) along with (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-16alpha+ ++,17alpha-epoxide (6). Oxidation of 5 with selenium dioxide afforded (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-8(14),16-++ +dien-15-one (7) and (25R)-3beta,26-dibenzoyloxy-5alpha,14beta-choles t-16-en-15-one (8). Selective hydrogenation of 7 followed by hydrolysis in alcoholic potassium hydroxide yielded (25R)-3beta,26-dihydroxy-5alpha-cholest-8(14)-en-15-one (1). Hydrolysis of 5 and 8 in alcoholic potassium hydroxide provided (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2).  相似文献   

18.
Three further derivatives of 5,7,2',4'-tetrahydroxy-6-methyl isoflavanone have been isolated from the root extract of Desmodium canum and assigned the structures 2,3-dihydro-5,7-dihydroxy-6-methyl-3-(1a,2,3,3a,8b,8c-hexahydro-6-hydroxy-1,1,3a-trimethyl-1H-4-oxabenzo[f]cyclobut[c,d]inden-7-yl)-4H-1-benzopyran-4-one (1) 2,3-dihydro-5,7-dihydroxy-6-methyl-3-(6a,7,8,10a-tetrahydro-3-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-2-yl)-4H-1-benzopyran-4-one (2) 2,3-dihydro-5,7-dihydroxy-6-methyl-3-(3-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-2-yl) 4H-1-benzopyran-4-one (3). The three compounds and the previously isolated chromene 4 all derive from the geranylated precursor 5 by a series of cannabinoid-like oxidative rearrangements.  相似文献   

19.
Toxicity of eight 22,23-dihydroxystigmastane derivatives (four pairs of (22R,23R)- and (22S,23S)-isomers differing in steroid backbone structure) to human breast carcinoma MCF-7 cells was compared. For every pair of structurally related compounds, (22R,23R) isomer was found to be significantly more toxic than (22S,23S) isomer. Computational analysis showed that side chain of (22R,23R)-22,23-dihydroxystigmastane derivatives is rigid, whereas that of (22S,23S)-isomers is rather flexible. Structure of steroid backbone significantly affects cytotoxicity of (22R,23R)-22,23-dihydroxystigmastane derivatives to human breast carcinoma MCF-7 cells, human ovary carcinoma CaOv cells, and human prostate carcinoma LnCaP cells. (22R,23R)-3β,22,23-trihydroxystigmast-5-ene and (22R,23R)-3β,22,23-trihydroxystigmast-5-en-7-one, both comprising equatorial 3β-hydroxyl group, exhibited the highest cytotoxicity, while the most polar 28-homobrassinolide and 28-homocastasterone, both comprising 2α,3α-dihydroxy groups, exhibited the lowest toxicity. Binding of (22R,23R)-22,23-dihydroxystigmastane derivatives to plasmatic membrane was suggested to be important for cytotoxicity.  相似文献   

20.
Two blazeispirane derivatives including blazeispirols G and I were isolated from the cultured mycelia of the fungus Agaricus blazei Murill and were established to be (20S, 22S, 23R, 24S)-14 beta,22: 22,25-diepoxy-5-methoxy-des-A-ergosta-5,7,9-triene-11 alpha,23-diol and (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-5-methoxy-des-A-ergosta-5,7,9,11-tetraene-23,28-diol by comparison of extensive 1D and 2D NMR spectral data with that of blazeispirol A. Furthermore, four blazeispirol derivatives blazeispirols, U, V, V(1) and Z(1) were isolated form the same source described above. Their structures were determined to be (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-23-hydroxyergosta-4,6,8,11-tetraen-3-one, (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-6 alpha,7 alpha,23-trihydroxyergosta-4,8,11-trien-3-one, (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-6 beta,7 alpha,23-trihydroxyergosta-4,8,11-trien-3-one and (20S, 22S, 23R, 24S)-14 beta,22:22,25-diepoxy-23-hydroxy-4,5-seco-ergosta-6,8-diene-3,5-dione by extensive 1 D and 2D NMR spectral data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号