首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The absolute configuration of the flagellar apparatus inPyramimonas gelidicola McFadden et al. has been determined and shows identity withP. obovata, indicating that they are closely related. Comparison with the flagellar apparatus of quadriflagellate zoospores from the more advancedChlorophyceae suggest thatPyramimonas may be a primitive ancestral form. The microtubular cytoskeleton has been examined in detail and is shown to be unusual in that it does not attach to the flagellar apparatus. Cytoskeletal microtubules are nucleated individually, and this is interpreted as an adaptation to the methods of mitosis and scale deployment. In view of the primitive nature of these processes, it is proposed that this type of cytoskeletal organization may represent a less advanced condition than that of the flagellar root MTOCs (microtubule organizing centers) observed in theChlorophyceae.  相似文献   

2.
Mesostigma viride Lauterborn (Prasinophyceae) is the first green flagellate found to have multilayered structures (MLS) in its flagellar apparatus. MLS's were previously known from green algae only in charophycean swarmers, linking theCharophyceae to the origin of land plants, whose male gametes (when flagellated) also possess an MLS.M. viride is, therefore, probably more closely related to the origin of theCharophyceae than any other green flagellate that has been thoroughly studied so far. The occurrence of MLS's in green flagellates and apparently in other algae and protozoans suggests that an MLS occurred in an ancient group of flagellates and has survived in various protistan lines, including the line of green algae related to land plants. The occurrence of a synistosome inM. viride and other of its characteristics suggest that it is more closely related toPyramimonas than to other genera of scaly green flagellates.This work was supported by National Science Foundation Grant DEB-78-03554.  相似文献   

3.
The zoospores and isogametes ofUlvaria obscura var.blyttii, the isogametes ofMonostroma bullosum, and the anisogametes ofM. grevillei have a flagellar apparatus with counterclockwise absolute orientation and terminal caps, and therefore belong to theUlvophyceae. On the basis of the absence or presence of body scales and the morphologies of certain flagellar apparatus components,Ulvaria obscura var.blyttii is retained in theUlvales, whileM. bullosum, M. grevillei andM. oxyspermum are referred to theUlotrichales. Differences in scale morphology, certain flagellar apparatus components, and early thallus ontogeny support the transfer ofM. oxyspermum to the genusGayralia. Mating structures and their positional relationships within the cell are described from the gametes examined. A plasmalemma-associated plaque that may be a degenerate mating structure occurs in someG. oxysperma motile cells.  相似文献   

4.
The spatial configuration of the flagellar apparatus of the biflagellate zoospores of the green algal genusMicrospora is reconstructed by serial sectioning analysis using transmission electron microscopy. Along with the unequal length of the flagella, the most remarkable characteristics of the flagellar apparatus are: (1) the subapical emergence of the flagella (especially apparent with scanning electron microscopy); (2) the parallel orientation of the two basal bodies which are interconnected by a prominent one-piece distal connecting fiber; (3) the unique ultrastructure of the distal connecting fiber composed of a central tubular region which is bordered on both sides by a striated zone; (4) the different origin of the d-rootlets from their relative basal bodies; (5) the asymmetry of the papillar region which together with the subapical position of the basal bodies apparently cause the different paths of corresponding rootlets in the zoospore anterior; (6) the presence of single-membered d-rootlets and multi-membered s-rootlets resulting in a 7-1-7-1 cruciate microtubular root system which, through the different rootlet origin, does not exhibit a strict 180° rotational symmetry. It is speculated that the different basal body origin of the d-rootlets is correlated with the subapical implant of flagella. It is further hypothesized that in the course of evolution the ancestors ofMicrospora had a flagellar papilla that has migrated from a strictly apical position towards a subapical position. Simultaneously, ancestral shift of flagella along the apical cell body periphery has taken place as can be concluded from the presence of an upper flagellum overlying a lower flagellum in the flagellar apparatus ofMicrospora. The basic features of the flagellar apparatus of theMicrospora zoospore resemble those of the coccoid green algal generaDictyochloris andBracteacoccus and also those of the flagellate green algal genusHeterochlamydomonas. This strengthens the general supposition thatMicrospora is evolutionarily closely related to taxa which were formerly classified in the traditionalChlorococcales.  相似文献   

5.
Komárek has recently reviewed the various species assigned to the green algal genusNeochloris Starr (Chlorococcales, Chlorococcaceae) and removed those with uninucleate vegetative cells to a new genus,Ettlia. Watanabe & Floyd, unaware ofKomárek's work, also reviewed the species ofNeochloris and distributed them among three genera—Neochloris, Chlorococcopsis gen. nov., andParietochloris gen. nov.—on the basis of details of the covering of the zoospore and the arrangement of the basal bodies of the flagellar apparatus. This paper reconciles these two treatments and makes additional recommendations at the ranks of genus, family, order, and class.  相似文献   

6.
The biflagellate zoospores ofProtoderma sarcinoidea and the quadriflagellate zoospores ofChamaetrichon capsulatum are each covered by an amorphous, mucous material and a single layer of square scales, and the pyrenoid matrix is traversed by one or more thylakoid membranes. In the flagellar apparatus the basal bodies ofP. sarcinoidea and the upper basal bodies ofC. capsulatum are displaced in the counterclockwise absolute orientation, while the lower basal bodies ofC. capsulatum are directly opposed. Other components of the flagellar apparatus observed in each alga include: cruciately arranged d and s rootlets, each associated with an electron-dense component; simple terminal caps comprised of large and small subunits; a terminal electron-dense mass located near the proximal end of each basal body inP. sarcinoidea and near the upper basal bodies inC. capsulatum; and two rhizoplasts. Components specific to one or the other species include a single accessory basal body inP. sarcinoidea and a fibrous, electron-opaque band that links the upper and the lower basal bodies inC. capsulatum. The flagellar apparatus architecture ofP. sarcinoidea resemblesGayralia oxysperma, while that ofC. capsulatum is similar toTrichosarcina polymorphum andUlothrix species, all of which are included in theUlothrix-group,Ulotrichales, Ulvophyceae.  相似文献   

7.
The flagellar root system of zoospores in two species ofChlorosarcinopsis (C. minuta andC. spec.) has been studied in detail. The biflagellate zoospores show a cruciate root system, two of the four microtubular roots containing two microtubules, the other two four microtubules. The flagellar apparatus is otherwise identical with that ofChlamydomonas reinhardi as described byRingo (1967). Evidence is presented that the genusChlamydomonas is characterized by a bilateral symmetric root system (4-2-4-2) rather than a system with four equally numbered roots (i.e. 4-4-4-4). It is suggested that a root system with four identical cruciate roots is not present in any biflagellate algal cell. The taxonomic significance of cruciate root systems in green algae is discussed refering to the identical root systems ofChlorosarcinopsis andChlamydomonas.  相似文献   

8.
Zoospore ultrastructure (incl. flagellar apparatus) has been investigated in three species ofTrebouxia (T. glomerata, T. erici, T. pyriformis) and one species ofPseudotrebouxia (P. impressa) using an absolute configuration analysis. Zoospores in all taxa studied are nearly identical in ultrastructure and exhibit a very distinctive disposition of cell organelles: cells are naked, biflagellate and considerably flattened along the plane of flagellar beat, the single contractile vacuole is located anteriorly in the ventral region of the cell, the nucleus is anteriorly to centrally located in the dorsal region of the cell. A single dictyosome is located close to the anterior, ventral edge of the nucleus. The chloroplast occupies a posterior position in the cell and usually has an anterior profile in the left region of the cell. There are two branched mitochondria per cell or a single mitochondrial reticulum with profiles anterior to the nucleus (in the dorsal region of the cell), and posterior to the nucleus. In zoospores ofTrebouxia spp. the posterior mitochondrial profile is associated with a microbody, inP. impressa zoospores the anterior mitochondrial profiles are associated with a microbody. The zoospores contain a distinctive system of three ER-cisternae: one system links to both basal bodies and extends to the nucleus, the other two systems subtend the plasmamembrane on the left and right broad cell surfaces and extend to the posterior region of the cell. The flagellar apparatus is structurally identical to that previously described for zoospores ofFriedmannia israelensis and exhibits basal body displacement by one basal body diameter into the 11/5 o'clock direction, a non-striated distal connecting fiber, a cruciate microtubular root system lacking system I fibers and presence of a single system II fiber which connects the basal bodies with the nucleus and runs parallel to one of the ER-strands. The left flagellar roots (X-roots) are subtended by a complex set of amorphous and striated material that connects each left root with both basal bodies.—This study demonstrates the close systematic relationship between the phycobiontsTrebouxia andPseudotrebouxia and the generaFriedmannia, Pleurastrum, andMicrothamnion and supports recent classification schemes which place all these taxa into a single order separate from otherChlorophyta. Dedicated to Prof. DrElisabeth Tschermak-Woess on the occasion of her 70th birthday.  相似文献   

9.
The serological reaction of seed proteins provides evidence for a partly new systematic arrangement ofCytisus sect.Trianthocytisus and ofCytisus s.l. Proposed modifications agree with recent advances in morphological taxonomy. Sect.Trianthocytisus includes only two species,C. villosus andC. aeolicus. Its position is central within the genus, and this fact agrees with the proposed retypification ofCytisus (type species:C. villosus).C. emeriflorus, formerly included in the same section, constitutes the monospecific sect.Emeroides, which is intermediate towards the genusLembotropis. This is serologically isolated and includes onlyL. nigricans. It is confirmed thatC. sessilifolius should be removed from the genusCytisus as a monospecific genus:Cytisophyllum Lang which is closely allied toHesperolaburnum and toPodocytisus, the most primitive genera ofGenisteae.  相似文献   

10.
The rare unicellular rhodophytePorphyridium griseum has been collected and isolated from basins, fed with thermal water, in Piestany, Czechoslovakia. This is the first report ofP. griseum sinceGeitler's find in the Neusiedler See, Austria. Ultrastructural investigations of the new strain demonstrate thatP. griseum belongs to the closely related genusRhodella. Comparison with current species ofRhodella and pigment analyses show thatP. griseum is identical to the marineR. reticulata and a new combination,Rhodella grisea (Geitler) comb. nov., is proposed to include both organisms.Dedicated to Prof. DrLothar Geitler on the occasion of his 90th birthday.  相似文献   

11.
The genusPlectranthus (Lamiaceae) shows remarkable radiation on the sandstones of southern Natal and northern Transkei in South Africa, where six endemic species occur. Two of these endemic species,P. hilliardiae andP. oribiensis, are included in this study, as well asP. reflexus, for which only limited data are available. The other species that were studied areP. ambiguus, P. ciliatus, P. ecklonii, P. madagascariensis andP. zuluensis. Four of these taxa,P. ambiguus, P. hilliardiae, P. reflexus andP. saccatus var.longitubus, have uniquely long corolla-tubes (20–30mm) and this is related to pollination by nemestrinid flies of the genusStenobasipteron that have proboscides of similar length. Other nemestrinid species of the genusProsoeca have shorter proboscides and pollinate two species ofPlectranthus with shorter corolla-tube lengths (6–15mm). Acrocerid flies, tabanid flies and anthophorid bees are also important visitors to these species. This study on the pollination of seven species of varying corolla-tube lengths shows a correlation between floral tube length and proboscis length of insect visitors, many of which are recorded for the first time as pollinators ofPlectranthus.  相似文献   

12.
Summary The euglenoids and kinetoplastids form a diverse assemblage of organisms which show no obvious phylogenetic relationship with other flagellates. An ultrastructural examination and comparison of the flagellar apparatus, the feeding apparatus, and mitotic nucleus indicate a number of shared morphological features which support a common ancestry for the two groups. Of particular interest is the euglenoid,Petalomonas cantuscygni, which shares many of the ultrastructural features common to both groups. Based on the data presented, we hypothesize that a euglenoid with features similar to those now present inP. cantuscygni was ancestral to both the euglenoid and kinetoplastid lines.Abbrevation MTR complex of reinforcing microtubules  相似文献   

13.
The ultrastructure of the type species of the genusDunaliella, D. salina, has been reinvestigated in an attempt to clarify the relationships betweenDunaliella andSpermatozopsis. Dunaliella salina differs in the following ultrastructural characters fromSpermatozopsis (as exemplified byS. similis Preisig etMelkonian): presence of a distinctive surface coat covering the plasmalemma; presence of a prominent pyrenoid (with pairs of thylakoids partially entering the pyrenoid matrix); dictyosomes parabasal; endoplasmic reticulum closely underlying the plasmalemma around most of the cell; contractile vacuoles absent; cell form ovoid to elongated and not spirally twisted; mitochondrial profiles near the flagellar apparatus. Differences in the ultrastructure of the flagellar apparatus: basal body angle more or less fixed; distal connecting fibre cross-striated; system II fibre (rhizoplast) present, associated with mitochondrial profile; system I fibre underlying two-stranded microtubular root; mating structure present. These ultrastructural differences justify distinction between the two taxa at generic level. The problematical status of freshwater species ofDunaliella is briefly discussed.  相似文献   

14.
Nine species ofNeochloris can be divided into three groups on the basis of comparative ultrastructure of the flagellar apparatus, the cell wall and the pyrenoid of zoospores. In Group I,N. wimmeri andN. minuta, zoospores are thin-walled, pyrenoids are penetrated by stromal channels, and the basal bodies are in the clockwise absolute orientation and connected by the distal and two proximal fibers. In Group II,N. aquatica, N. vigenis, N. terrestris, N. pyenoidosa, andN. pseudostigmatica, zoospores are naked or covered by fuzzy material, pyrenoids are covered by a continuous starch sheath or invaginated by cytoplasmic channels, basal bodies are directly opposed, the distal fiber is differentiated into a ribbed structure at the central region, a striated microtubule-associated component (SMAC) is continuous between opposite two-membered rootlets and connected to the ribbed structure, proximal ends of basal bodies are covered by partial caps, each two-membered rootlet and a basal body are connected by a striated fiber to the X-membered rootlet associated with the opposite basal body, and the basal bodies, when oriented at wide angles, are joined at their proximal ends by core extensions. In Group III,N. pseudoalveolaris andN. cohaerens, zoospores are naked, pyrenoids are traversed by parallel thylakoids, basal bodies are in the counterclockwise absolute orientation and overlapped, and each X-membered rootlet is connected to the end of the opposite basal body by a terminal cap. It is suggested that the genusChlorococcopsis gen. nov. be erected for the Group I species. Group II, which includes the type species,N. aquatica, should be preserved asNeochloris. The group appears to be closely related to the coenobial generaPediastrum, Hydrodictyon, andSorastrum, and to have affinities with the coenocytic generaSphaeroplea andAtractomorpha as well. It is also suggested that the genusParietochloris gen. nov. be erected in thePleurastrophyceae for the species of Group III.  相似文献   

15.
Summary A short cylindrical pocket arises as an infolding from the ventral surface of the reservoir near the canal in several species ofEuglena (E. mutabilis, E. gracilis strain T,E. spec.). The structure is linked to a band of microtubules which is shown to be identical to the ventral flagellar root of the euglenoid flagellar root system. An absolute configuration analysis of the flagellar root system inE. mutabilis and a comparison with the flagellar apparatus of colourlessEuglenophyceae and the bodonids (Kinetoplastida) reveals structural and positional homology between the reservoir pocket ofEuglena and the cytostome of these organisms and strongly supports the phylogenetic derivation of theEuglenophyceae from theKinetoplastida and the evolution of greenEuglenophyceae from phagotrophic colourless taxa. The functional significance of the cryptic cytostome ofEuglena is discussed in relation to the occurrence of intracellular endosymbiotic bacteria.  相似文献   

16.
The fine structure ofGloeomonas simulans Fott (1957) was studied electron microscopically to ascertain whether it belongs to the genusChlamydomonas rather than toGloeomonas. Most cytoplasmic elements and the cell wall do not differ from otherChlamydomonadaceae but its flagellar rootlet system is unique: Each of the two flagella has an accessory basal body; its basis is accompanied by two inner and two outer bands which are connected distally (one inner and one outer band on each side) resp. proximally (the two outer bands); the latter form a long (up to 3–5 µm) connecting band between the two flagellar bases. The nucleus contains fibrillar bundels.—The unique flagellar rootlet system seems to provide a better basis for the generic classification ofGloeomonas than the position of the contractile vacuoles or the size of the apical papilla, and strongly suggests the exclusion ofG. simulans fromChlamydomonas.
Zweiter Beitrag einer vonEttl (1965a) begonnenen Publikationsreihe.  相似文献   

17.
M. Melkonian 《Protoplasma》1981,108(3-4):341-355
Summary The flagellar apparatus of the quadriflagellate scaly green algaPyramimonas obovata has been studied in detail and the absolute configuration of the flagellar apparatus has been determined. The flagellar root system is cruciate (4-2-4-2-system). 18 major basal body associated fibrous structures connect the four basal bodies with each other. Each basal body is linked to an adjacent basal body by a unique set of connecting fibres, i.e., the flagellar apparatus does not exhibit 180° rotational symmetry. The flagellar apparatus ofPyramimonas obovata is compared with that of quadriflagellate motile cells of theChlorophyceae sensu Stewart andMattox and the phylogenetic relationships are discussed.  相似文献   

18.
The flagellar apparatus ofCruciplacolithus neohelis (McIntyre and Bé) Reinhardt including its transition region is described. The transition region contains a hat-shaped structure, which is suggested to be one of the common features of the Prymnesiophyceae. Its flagellar root system resembles that of most coccolithophorids examined so far, except that only one vestigial crystalline root is present associated with root 1. Two well-developed crystalline roots associated with roots 1 and 2, respectively, appear in the preprophase of nuclear division, suggesting conversion to a mitotic spindle. The taxonomic and evolutionary significance of the flagellar apparatus is discussed.  相似文献   

19.
The flagellar apparatus of the small prymnesiophytePrymnesium patellifera has been analysed and a reconstruction is presented. Externally, the cell carries two sub-equal flagella and a short non-coiling haptonema. Within the cell, there are four microtubular roots and a number of fibrous bands, the latter interconnecting the two basal bodies and the haptonema base. One of the roots (r1) consists of a sheet of up to 25 microtubules originating close to the proximal extremity of the haptonema base, but the other three roots are composed of between 1 and 4 microtubules only. Distally, a large striated fibrous auxiliary connecting root extends across the anterior part of the cell linking root r1 and a mitochondrial profile on the opposite side of the cell. The arrangement of the components of the flagellar apparatus ofP. patellifera is commensurate with the general pattern found in many prymnesiophytes other than members of the Pavlovales, but there are a number of differences in detail from the other species described hitherto.  相似文献   

20.
Summary This fine structural study ofUlothrix flacca (Dillw.) ThuretRoscoffensis variety (Berger-Perrot), a marineUlothrix, describes in detail the flagellar apparatus configuration of gametesin situ in the gametangia and in motile zygotes. The gametes's flagellar apparatus shows two basal bodies overlapping at their proximal end at a 30° angle, in an 11/5 o'clock configuration or with a counterclockwise absolute orientation. The basal bodies are interconnected by a non-striated band or capping plate. They are wrapped in their proximal part by an electron-dense sheath and obtured by a bilobed terminal cap. A cruciate microtubular root system having a 4-2-4-2 alternation pattern is present. A striated microtubule associated component (S.M.A.C.) or system I fibres accompany the two membered root R2. The system II fibres or rhizoplasts along with striated bands associated to the microtubular roots, were not observed and are presumed to be absent.In the motile zygotes, the basal bodies are paired in a cruciate pattern. During the fusion process, two basal bodies, one of each pair, slide in a face to face position with a slight displacement into the 11/5 o'clock direction; the other two make a 30° counterclockwise rotation, thus making a 60° angle between the two basal bodies of each pair instead of 30° in the gamete.After comparison with the flagellar apparatus of other green alga gametes, it is concluded that the taxonomic affinities ofUlothrix flacca var.Roscoffensis, lie with theUlvophyceae sensuStewart andMattox 1978.Abbreviations CP capping plate - ER endoplasmic reticulum - G Golgi body - LG lipid globule - M mitochondria - MS presumed mating structure - N nucleus - R 2,R 4 microtubular roots - SH sheath - SMAC striated microtubule associated component - TC terminal cap - V vacuole - Ve vesicles in the anterior papilla - 1, 2, 1, 2 basal bodies numerotation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号