共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human serum albumin (HSA), the most abundant protein in plasma, has been proposed to have an antioxidant role. The main feature responsible for this property is its only thiol, Cys34, which comprises approximately 80% of the total free thiols in plasma and reacts preferentially with reactive oxygen and nitrogen species. Herein, we show that the thiol in HSA reacted with hydrogen peroxide with a second-order rate constant of 2.26 M(-1) s(-1) at pH 7.4 and 37 degrees C and a 1:1 stoichiometry. The formation of intermolecular disulfide dimers was not observed, suggesting that the thiol was being oxidized beyond the disulfide. With the reagent 7-chloro-4-nitrobenzo-2-oxa-1,3-diazol (NBD-Cl), we were able to detect the formation of sulfenic acid (HSA-SOH) from the UV-vis spectra of its adduct. The formation of sulfenic acid in Cys34 was confirmed by mass spectrometry using 5,5-dimethyl-1,3-cyclohexanedione (dimedone). Sulfenic acid was also formed from exposure of HSA to peroxynitrite, the product of the reaction between nitric oxide and superoxide radicals, in the absence or in the presence of carbon dioxide. The latter suggests that sulfenic acid can also be formed through free radical pathways since following reaction with carbon dioxide, peroxynitrite yields carbonate radical anion and nitrogen dioxide. Sulfenic acid in HSA was remarkably stable, with approximately 15% decaying after 2 h at 37 degrees C under aerobic conditions. The formation of glutathione disulfide and mixed HSA-glutathione disulfide was determined upon reaction of hydrogen peroxide-treated HSA with glutathione. Thus, HSA-SOH is proposed to serve as an intermediate in the formation of low molecular weight disulfides, which are the predominant plasma form of low molecular weight thiols, and in the formation of mixed HSA disulfides, which are present in approximately 25% of circulating HSA. 相似文献
3.
《Free radical research》2013,47(6):684-693
AbstractThe Fe-S cluster of mitochondrial aconitase is rapidly and selectively inactivated by oxidants, yielding an inactive enzyme that can be reactivated by reductants and iron in vivo. In order to elucidate the metabolic impact of oxidant-dependent aconitase inhibition over the citric acid cycle, the respiratory chain reactions, and reactive species formation, we performed a metabolic analysis using isolated mitochondria from different rat tissues. Titrations with fluorocitrate showed IC50 for aconitase inhibition ranging from 7 to 24 μM. The aconitase inhibition threshold in mitochondrial oxygen consumption was determined to range from 63 to 98%. Of the tissues examined, brain and heart exhibited the highest values in the flux control coefficient (> 0.95). Aconitase-specific activity varied widely among tissues examined from ?60 mU/mg in liver to 321 mU/mg in kidney at 21% O2. In brain and heart, aconitase-specific activity increased by 42 and 12%, respectively, at 2% O2 reflecting aconitase inactivation by oxygen-derived oxidants at 21% O2. Both mitochondrial membrane potential and hydrogen peroxide production significantly decreased upon aconitase inhibition in heart and brain mitochondria. These results indicate that aconitase can exert control over respiration (with tissue specificity) and support the hypothesis that inactivation of aconitase may provide a control mechanism to prevent O2●? and H2O2 formation by the respiratory chain. 相似文献
4.
Shimizu S Ishii M Miyasaka Y Wajima T Negoro T Hagiwara T Kiuchi Y 《The international journal of biochemistry & cell biology》2005,37(4):864-875
We recently described that hydrogen peroxide (H2O2) stimulates the synthesis of tetrahydrobiopterin (BH4) through the induction of the rate-limiting enzyme GTP-cyclohydrolase I (GTPCH), and increases tetrahydrobiopterin content in vascular endothelial cells. Tetrahydrobiopterin is easily oxidized by peroxynitrite (ONOO-), but not by hydrogen peroxide. The aim of this study was to determine the effect of hydroxyl radical and peroxynitrite, which are both toxic biological oxidants, on tetrahydrobiopterin synthesis and the regulation of its content in vascular endothelial cells. In the cell-free assay system, tetrahydrobiopterin was rapidly oxidized by the hydroxyl radical and peroxynitrite, but not by hydrogen peroxide. However, the addition of not only hydrogen peroxide but also the hydroxyl radical and peroxynitrite to vascular endothelial cells transiently decreased tetrahydrobiopterin content, and then markedly increased its content. Interestingly, total biopterin content was also decreased by early treatment with oxidants. Moreover, oxidants induced the expression of GTP-cyclohydrolase I, and the increase of the tetrahydrobiopterin content was blocked by the treatment with GTP-cyclohydrolase I inhibitor. Both the hydrogen peroxide- and peroxynitrite-induced increases in tetrahydrobiopterin content and findings suggest that not only hydrogen peroxide but also the hydroxyl radical and peroxynitrite stimulates tetrahydrobiopterin synthesis through GTP-cyclohydrolase I expression, and that the hydroxyl radical plays a central role in the stimulation of tetrahydrobiopterin synthesis. Moreover, the transient decrease in BH4 to tetrahydrobiopterin. 相似文献
5.
Changes in intracellular Ca2+ homeostasis are thought to contribute to cell dysfunction in oxidative stress. The hypoxanthine-xanthine oxidase system (X-XO) mobilizes Ca2+ from intracellular stores and induces a marked rise in cytosolic calcium in different cell types. To identify the reactive O2 species involved in the disruption of calcium homeostasis by X-XO, we studied the effect of X-XO on [Ca2+]i by spectrofluorimetry with fura-2 in human umbilical vein endothelial cells (HUVEC). The [Ca2+]i response to X-XO was essentially diminished by superoxide dismutase (SOD) (200 U/ml) and catalase (CAT) (200 U/ml), which scavenge the superoxide anion, O2?, or H2O2, respectively. The [Ca2+]i increase stimulated by 10 nmol H2O2/ml/min, generated from the glucose-glucose oxidase system, or 10 μM H2O2, given as bolus, was about a third of that induced by X-XO (10 nmol O2?/ml/min) but was comparable to that induced by X-XO in the presence of SOD. The X-XO—stimulated [Ca2+]i increase was significantly reduced by 100 μM o-phenanthroline, which inhibits the iron-catalysed formation of the hydroxyl radical. On the other hand, the [Ca2+]i response to low dose X-XO (1 nmol O2?/ml/min) was markedly enhanced in the presence of 1 μM H2O2, which itself had no effect on [Ca2+]i. More than 50% of this synergistic effect was prevented by o-phenanthroline. These results indicate that the effect of X-XO on calcium homeostasis appears to result from an interaction of O2? and H2O2, which could be explained by the formation of the hydroxyl radical. © 1995 Wiley-Liss, Inc. 相似文献
6.
Woznichak MM Overcast JD Robertson K Neumann HM May SW 《Archives of biochemistry and biophysics》2000,379(2):314-320
Peroxynitrite, a reactive cytotoxic species generated by the reaction of superoxide with nitric oxide, rapidly oxidizes phenylaminoethyl selenide (PAESe) and its para-substituted derivatives with second-order rate constants ranging from 900 to 3000 M(-1) s(-1) at neutral pH (pH 7.0) and 25 degrees C. These values are approximately 3 x 10(4) times greater than the corresponding rate constants for the reactions of selenides with hydrogen peroxide. The peroxynitrite reaction was also studied at alkaline pH. HPLC analysis confirms that both the peroxynitrite and hydrogen peroxide reactions produced the corresponding phenylaminoethyl selenoxide (PAESeO) as the sole selenium-containing product, with a stoichiometry of 1 mol of PAESe oxidized per 1 mol of PAESeO formed per 1 mol of oxidant reacted. The influence of para-substituents on the rate constants was investigated using Hammett plots; in both cases the data are consistent with an S(N)2-type mechanism, wherein the selenium atom acts as the nucleophile. Our results provide further evidence that organoselenium compounds may play a protective role in the defense against the many reactive oxidizing species produced in cellular metabolism. 相似文献
7.
Reaction of peroxynitrite with reduced nicotinamide nucleotides, the formation of hydrogen peroxide.
NAD(P)H acts as a two-electron reductant in physiological, enzyme-controlled processes. Under nonenzymatic conditions, a couple of one-electron oxidants easily oxidize NADH to the NAD(.) radical. This radical reduces molecular oxygen to the superoxide radical (O-(2)) at a near to the diffusion-controlled rate, thereby subsequently forming hydrogen peroxide (H(2)O(2)). Because peroxynitrite can act as a one-electron oxidant, the reaction of NAD(P)H with both authentic peroxynitrite and the nitric oxide ((. )NO) and O-(2) releasing compound 3-morpholinosydnonimine N-ethylcarbamide (SIN-1) was studied. Authentic peroxynitrite oxidized NADH with an efficiency of approximately 25 and 8% in the absence and presence of bicarbonate/carbon dioxide (HCO(3)(-)/CO(2)), respectively. NADH reacted 5-100 times faster with peroxynitrite than do the known peroxynitrite scavengers glutathione, cysteine, and tryptophan. Furthermore, NADH was found to be highly effective in suppressing peroxynitrite-mediated nitration reactions even in the presence of HCO(3)(-)/CO(2). Reaction of NADH with authentic peroxynitrite resulted in the formation of NAD(+) and O-(2) and, thus, of H(2)O(2) with yields of about 3 and 10% relative to the added amounts of peroxynitrite and NADH, respectively. Peroxynitrite generated in situ from SIN-1 gave virtually the same results; however, two remarkable exceptions were recognized. First, the efficiency of NADH oxidation increased to 60-90% regardless of the presence of HCO(3)(-)/CO(2), along with an increase of H(2)O(2) formation to about 23 and 35% relative to the amounts of added SIN-1 and NADH. Second, and more interesting, the peroxynitrite scavenger glutathione (GSH) was needed in a 75-fold surplus to inhibit the SIN-1-dependent oxidation of NADH half-maximal in the presence of HCO(3)(-)/CO(2). Similar results were obtained with NADPH. Hence, peroxynitrite or radicals derived from it (such as, e.g. the bicarbonate radical or nitrogen dioxide) indeed oxidize NADH, leading to the formation of NAD(+) and, via O-(2), of H(2)O(2). When peroxynitrite is generated in situ in the presence of HCO(3)(-)/CO(2), i.e. under conditions mimicking the in vivo situation, NAD(P)H effectively competes with other known scavengers of peroxynitrite. 相似文献
8.
Bovine aortic endothelial cells release hydrogen peroxide. 总被引:1,自引:0,他引:1
T Sundqvist 《Journal of cellular physiology》1991,148(1):152-156
Endothelial cells grown on microcarriers are able to release H2O2 to the extracellular environment without any added stimulus. The extracellularly released H2O2 can be detected by luminol-amplified chemiluminescence (CL) if horseradish peroxidase is added. The CL response can be reduced by catalase and blocked by superoxide dismutase, indicating that O2- could be a precursor for H2O2. The CL kinetics, i.e., a long lag time followed by a rapid shift to a new level, indicate activation of an O2(-)-producing enzyme. The cells are also able to protect themselves from H2O2 stimulation by both catalase and the glutatione system. Bradykinin stimulates the H2O2 release, but if the effect is directly stimulatory or if it acts by reduction of the protective system is at present unclear. The extracellularly released H2O2 could be a cause of injury to the endothelial cells or to the subendothelial matrix. 相似文献
9.
Neutrophil-mediated methemoglobin formation in the erythrocyte. The role of superoxide and hydrogen peroxide 总被引:9,自引:0,他引:9
S J Weiss 《The Journal of biological chemistry》1982,257(6):2947-2953
Human neutrophils incubated with phorbol myristate acetate oxidized hemoglobin within the intact erythrocyte by a mechanism dependent on cell-cell contact but independent of phagocytosis. Spectrophotometric examination of the erythrocyte lysates revealed that the major component formed was methemoglobin along with small amounts of a species with spectral characteristics similar to choleglobin. Methemoglobin formation was directly related to the neutrophil concentration and the time of incubation. The addition of superoxide dismutase or catalase modestly inhibited the formation of methemoglobin, while a combination of the enzymes provided the most dramatic protection. Methemoglobin of hydroxyl radical or hypochlorous acid scavengers. Apparently, either O2.- or H2O2 alone was capable of mediating methemoglobin formation in the intact erythrocyte. Maintenance of the intraerythrocytic hemoglobin in its oxygenated state or its derivatization to carbon monoxyhemoglobin markedly inhibited methemoglobin formation. Blockade of the anion channels in the intact erythrocyte with sulfonated stilbenes inhibited O2.- but not H2O2 from oxidizing intracellular hemoglobin. It appears that neutrophil-derived O2.- and H2O2 can cross the erythrocyte membrane through the anion channel or diffuse directly into the intracellular space and react with oxyhemoglobin or deoxyhemoglobin to form a mixture of hemoglobin oxidation products within the intact cell. 相似文献
10.
Moreno-Manzano V Ishikawa Y Lucio-Cazana J Kitamura M 《The Journal of biological chemistry》2000,275(17):12684-12691
Tumor necrosis factor-alpha (TNF-alpha) induces reactive oxygen species (ROS) that serve as second messengers for intracellular signaling. Currently, precise roles of individual ROS in the actions of TNF-alpha remain to be elucidated. In this report, we investigated the roles of superoxide anion (O-(2)), hydrogen peroxide (H(2)O(2)), and peroxynitrite (ONOO(-)) in TNF-alpha-triggered apoptosis of mesangial cells. Mesangial cells stimulated by TNF-alpha produced O-(2) and underwent apoptosis. The apoptosis was inhibited by transfection with manganese superoxide dismutase or treatment with a pharmacological scavenger of O-(2), Tiron. In contrast, although exogenous H(2)O(2) induced apoptosis, TNF-alpha-triggered apoptosis was not affected either by transfection with catalase cDNA or by treatment with catalase protein or glutathione ethyl ester. Similarly, although ONOO(-) precursor SIN-1 induced apoptosis, treatment with a scavenger of ONOO(-), uric acid, or an inhibitor of nitric oxide synthesis, N(G)-nitro-L-argininemethyl ester hydrochloride, did not affect the TNF-alpha-triggered apoptosis. Like TNF-alpha-induced apoptosis, treatment with a O-(2)-releasing agent, pyrogallol, induced typical apoptosis even in the concurrent presence of scavengers for H(2)O(2) and ONOO(-). These results suggested that, in mesangial cells, TNF-alpha induces apoptosis through selective ROS. O-(2), but not H(2)O(2) or ONOO(-), was identified as the crucial mediator for the TNF-alpha-initiated, apoptotic pathway. 相似文献
11.
12.
Michael C. Madden Thomas E. Eling Mitchell Friedman 《Prostaglandins & other lipid mediators》1987,34(3)
We have previously demonstrated that a 2H exposure of cultured pulmonary endothelial cells to ozone (0.0–1.0 ppm)
resulted in a concentration-dependent reduction of endothelial prostacyclin production (90% decrease at the 1.0 ppm level). Ozone-exposed endothelial cells, incubated with 20 uM arachidonate, also demonstrated a significant inhibition of prostacyclin synthesis. To further examine the mechanisms of the inhibition of prostacyclin synthesis, bovine pulmonary endothelial cells were exposedto 1.0 ppm ozone for 2H. A significant decease in protacyclin synthesis was found within 5 min of exposure (77 ± 36% of air-exposed control values, p < 0.05). Endothelial prostacyclin synthesis returned to baseline levels by 12H after ozone exposure, a time point which was similar to the recovery time of unexposed endothelium treated with 0.5 uM acetylsalicylic acid. Incubation of endothelial cells, previously exposed to 1.0 ppm ozone for 2 hours, with 4 uM PGH2 resulted in restoration of essentially normal prostacyclin synthesis. When endothelial cells were co-incubated with catalase (5U/ml) during ozone exposure, no inhibition of prostacycline synthesis was observed. Co-incubation with either heat-inactivated catalase or superoxide dismutase (10U/ml) did not affect the ozone-induced inhibition of prostacycline synthesis. These data suggest that H2O2 is a major toxic species produced in endothelial cells during ozone exposure and responsible for the inhibiton of endothelial cyclooxygenase activity. 相似文献
13.
We compared the Ca(2+) responses to reactive oxygen species (ROS) between mouse endothelial cells derived from large-sized arteries, aortas (aortic ECs), and small-sized arteries, mesenteric arteries (MAECs). Application of hydrogen peroxide (H(2)O(2)) caused an increase in cytosolic Ca(2+) levels ([Ca(2+)](i)) in both cell types. The [Ca(2+)](i) rises diminished in the presence of U73122, a phospholipase C inhibitor, or Xestospongin C (XeC), an inhibitor for inositol-1,4,5-trisphosphate (IP(3)) receptors. Removal of Ca(2+) from the bath also decreased the [Ca(2+)](i) rises in response to H(2)O(2). In addition, treatment of endothelial cells with H(2)O(2) reduced the [Ca(2+)](i) responses to subsequent challenge of ATP. The decreased [Ca(2+)](i) responses to ATP were resulted from a pre-depletion of intracellular Ca(2+) stores by H(2)O(2). Interestingly, we also found that Ca(2+) store depletion was more sensitive to H(2)O(2) treatment in endothelial cells of mesenteric arteries than those of aortas. Hypoxanthine-xanthine oxidase (HX-XO) was also found to induce [Ca(2+)](i) rises in both types of endothelial cells, the effect of which was mediated by superoxide anions and H(2)O(2) but not by hydroxyl radical. H(2)O(2) contribution in HX-XO-induced [Ca(2+)](i) rises were more significant in endothelial cells from mesenteric arteries than those from aortas. In summary, H(2)O(2) could induce store Ca(2+) release via phospholipase C-IP(3) pathway in endothelial cells. Resultant emptying of intracellular Ca(2+) stores contributed to the reduced [Ca(2+)](i) responses to subsequent ATP challenge. The [Ca(2+)](i) responses were more sensitive to H(2)O(2) in endothelial cells of small-sized arteries than those of large-sized arteries. 相似文献
14.
R W Estabrook S Kawano J Werringloer H Kuthan H Tsuji H Graf V Ullrich 《Acta biologica et medica Germanica》1979,38(2-3):423-434
Four different experimental studies are described which were designed to evaluate the role of oxycytochrome P-450 in the formation of superoxide anions and hydrogen peroxide. The use of lipophilic copper chelates with superoxide dismutase like activity revealed that the primary site of interaction of these agents is related to the inhibition of the flavoprotein. NADPH-cytochrome P-450 reductase. Measurements of the proton assisted nucleophilic displacement of superoxide from oxycytochrome P-450 by high concentrations of sodium azide indicated an increase in the rate of hydrogen peroxide formation concomitant with the inhibition of the N-demethylation of ethylmorphine. Studies on the effect of NADH on the rate of hydrogen peroxide formation during NADPH oxidation by liver microsomes failed to reveal a stimulatory or synergistic effect in a manner analogous to results obtained during the cytochrome P-450 dependent oxidation of substrates such as ethylmorphine. These results suggest that hydrogen peroxide formation may not require the reduction of oxycytochrome P-450 to peroxycytochrome P-450. Measurements of the reduction of succinylated cytochrome c using purified cytochrome P-450 and the flavoprotein, NADPH-cytochrome P-450 reductase, directly demonstrate the formation of superoxide anions. It is concluded that oxycytochrome P-450 may decompose to generate hydrogen peroxide. 相似文献
15.
D B Hinshaw J M Burger R E Delius P A Hyslop G M Omann 《Archives of biochemistry and biophysics》1992,298(2):464-470
ATP loss is a prominent feature of cellular injury induced by oxidants or ischemia. How reduction of cellular ATP levels contributes to lethal injury is still poorly understood. In this study we examined the ability of H2O2 to inhibit in a dose-dependent manner the extrusion of fluorescent organic anions from bovine pulmonary artery endothelial cells. Extrusion of fluorescent organic anions was inhibited by probenecid, suggesting an organic anion transporter was involved. In experiments in which ATP levels in endothelial cells were varied by treatment with different degrees of metabolic inhibition, it was determined that organic anion transport was ATP-dependent. H2O2-induced inhibition of organic anion transport correlated well with the oxidant's effect on cellular ATP levels. Thus H2O2-mediated inhibition of organic anion transport appears to be via depletion of ATP, a required substrate for the transport reaction. Inhibition of organic anion transport directly by probenecid or indirectly by metabolic inhibition with reduction of cellular ATP levels was correlated with similar reductions of short term viability. This supports the hypothesis that inhibition of organic anion transport after oxidant exposure or during ischemia results from depletion of ATP and may significantly contribute to cytotoxicity. 相似文献
16.
《Free radical research》2013,47(12):1496-1513
In endothelial cell dysfunction, the uncoupling of eNOS results in higher superoxide (O2??) and lower NO production and a reduction in NO availability. Superoxide reacts with NO to form a potent oxidizing agent peroxynitrite (ONOO?) resulting in nitrosative and nitroxidative stresses and dismutates to form hydrogen peroxide. Studies have shown superoxide dismutase (SOD) plays an important role in reduction of O2?? and ONOO? during eNOS uncoupling. However, the administration or over-expression of SOD was ineffective or displayed deleterious effects in some cases. An understanding of interactions of the two enzyme systems eNOS and SOD is important in determining endothelial cell function. We analyzed complex biochemical interactions involving eNOS and SOD in eNOS uncoupling. A computational model of biochemical pathway of the eNOS-related NO and O2?? production and downstream reactions involving NO, O2??, ONOO?, H2O2 and SOD was developed. The effects of SOD concentration on the concentration profiles of NO, O2??, ONOO? and H2O2 in eNOS coupling/uncoupling were investigated. The results include (i) SOD moderately improves NO production and concentration during eNOS uncoupling, (ii) O2?? production rate is independent of SOD concentration, (iii) Increase in SOD concentration from 0.1 to 100 μM reduces O2?? concentration by 90% at all [BH4]/[TBP] ratios, (iv) SOD reduces ONOO? concentration and increases H2O2 concentration during eNOS uncoupling, (v) Catalase can reduce H2O2 concentration and (vi) Dismutation rate by SOD is the most sensitive parameter during eNOS uncoupling. Thus, SOD plays a dual role in eNOS uncoupling as an attenuator of nitrosative/nitroxidative stress and an augmenter of oxidative stress. 相似文献
17.
Antibiotic activities of peptides, hydrogen peroxide and peroxynitrite in plant defence. 总被引:2,自引:0,他引:2
F García-Olmedo P Rodríguez-Palenzuela A Molina J M Alamillo E López-Solanilla M Berrocal-Lobo C Poza-Carrión 《FEBS letters》2001,498(2-3):219-222
Genes encoding plant antibiotic peptides show expression patterns that are consistent with a defence role. Transgenic over-expression of defence peptide genes is potentially useful to engineer resistance of plants to relevant pathogens. Pathogen mutants that are sensitive to plant peptides in vitro have been obtained and a decrease of their virulence in planta has been observed, which is consistent with their hypothetical defence role. A similar approach has been followed to elucidate the potential direct anti-microbial role of hydrogen peroxide. Additionally, a scavenger of peroxynitrite has been used to investigate its involvement in plant defence. 相似文献
18.
Brodsky SV Gao S Li H Goligorsky MS 《American journal of physiology. Heart and circulatory physiology》2002,283(5):H2130-H2139
The accumulated ultrastructural and biochemical evidence is highly suggestive of the existence of mitochondrial nitric oxide (NO) synthase (mtNOS), where local production of NO regulates the electron transport along the respiratory chain. Here, the functional competence of mtNOS in situ in a living cell was examined using an intravital fluorescent NO indicator, 4,5-diaminofluorescein, employing a new procedure for loading it into the mitochondria to demonstrate local NO generation in undisrupted endothelial cells and in isolated mitochondria as well as in human embryonic kidney cells stably expressing endothelial NOS. With the use of this approach, we showed that endothelial cells incubated in the presence of high concentration of D-glucose (but not L-glucose) are characterized by the reduced NO synthetic function of mitochondria despite the unaltered abundance of the enzyme. In parallel, mitochondrial generation of superoxide was augmented in endothelial cells incubated in the presence of a high concentration of D-glucose. Both the NO generation and superoxide production in hyperglycemic environment could be restored to control levels by treating cells with a cell-permeable superoxide dismutase mimetic. In addition, enhanced mitochondrial superoxide production could be suppressed with an inhibitor of NOS in stimulated endothelial cells. In conclusion, the data 1) provide direct evidence of mitochondrial NO production in endothelial cells, 2) demonstrate its suppression and enhanced superoxide generation in hyperglycemic environment, and 3) provide evidence that "uncoupled" mtNOS represents an important source of superoxide anions in endothelial cells incubated in high glucose-containing medium. 相似文献
19.
Hydrogen peroxide (H2O2) was detected cytochemically in plant tissues during anoxia and re-oxygenation by transmission electron microscopy using its reaction with cerium chloride to produce electron dense precipitates of cerium perhydroxides. Anoxia-tolerant yellow flag iris (Iris pseudacorus) and rice (Oryza sativa), and anoxia-intolerant wheat (Triticum aestivum) and garden iris (Iris germanica) were used in the experiments. In all plants tested, anoxia and re-oxygenation increased H2O2 in plasma membranes and the apoplast. In the anoxia-tolerant species the response was delayed in time, and in highly tolerant I. pseudacorus plasma membrane associated H2O2 was detected only after 45 d of oxygen deprivation. Quantification of cerium precipitates showed a statistically significant increase in the amount of H2O2 caused by anoxia in wheat root meristematic tissue, but not in the anoxia-tolerant I. pseudacorus rhizome parenchyma. Formation of H2O2 under anoxia is considered mainly an enzymatic process (confirmed by an enzyme inhibition analysis) and is due to the trace amount of dissolved oxygen (below 10(-5) M) present in the experimental system. The data suggest oxidative stress is an integral part of oxygen deprivation stress, and emphasize the importance of the apoplast and plasma membrane in the development of the anoxic stress response. 相似文献