首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.  相似文献   

2.
Bacteriophage lambda integrase (Int) catalyzes at least four site-specific recombination pathways between pairs of attachment (att) sites. Protein-protein contacts between monomers of Int are presumed to be important for these site-specific recombination events for several reasons: Int binds to the att sites cooperatively, catalytic Int mutants can complement each other for strand cleavage, and crystal structures for two other recombinases in the Int family (Cre from phage P1 and Int from Haemophilus influenzae phage HP1) show extensive protein-protein contacts between monomers. We have begun to investigate interactions between Int monomers by three approaches. First, using a genetic assay, we show that regions of protein-protein interactions occur throughout Int, including in the amino-terminal domain. This domain was previously thought to be important only for high-affinity protein-DNA interactions. Second, we have found that an amino-terminal His tag reduces cooperative binding to DNA. This disruption in cooperativity decreases the stable interaction of Int with core sites, where catalysis occurs. Third, using protein-protein cross-linking to investigate the multimerization of Int during recombination, we show that Int predominantly forms dimers, trimers, and tetramers. Moreover, we show that the cysteine at position 25 is present at or near the interface between monomers that is involved in the formation of dimers and tetramers. Our evidence indicates that the amino-terminal domain of Int is involved in protein-protein interactions that are likely to be important for recombination.  相似文献   

3.
The study of biochemical pathways requires the isolation and characterization of each and every intermediate in the pathway. For the site-specific recombination reactions catalyzed by the bacteriophage lambda tyrosine recombinase integrase (Int), this has been difficult because of the high level of efficiency of the reaction, the highly reversible nature of certain reaction steps, and the lack of requirements for high-energy cofactors or metals. By screening synthetic peptide combinatorial libraries, we have identified two related hexapeptides, KWWCRW and KWWWRW, that block the strand-cleavage activity of Int but not the assembly of higher-order intermediates. Although the peptides bind DNA, their inhibitory activity appears to be more specifically targeted to the Int-substrate complex, insofar as inhibition is resistant to high levels of non-specific competitor DNA and the peptides have higher levels of affinity for the Int-DNA substrate complex than for DNA alone. The peptides inhibit the four pathways of Int-mediated recombination with different potencies, suggesting that the interactions of the Int enzyme with its DNA substrates differs among pathways. The KWWCRW and KWWWRW peptides also inhibit vaccinia virus topoisomerase, a type IB enzyme, which is mechanistically and structurally related to Int. The peptides differentially affect the forward and reverse DNA transesterification steps of the vaccinia topoisomerase. They block formation of the covalent vaccinia topoisomerase-DNA intermediate, but have no apparent effect on DNA religation by preformed covalent complexes. The peptides also inhibit Escherichia coli topoisomerase I, a type IA enzyme. Finally, the peptides inhibit the bacteriophage T4 type II topoisomerase and several restriction enzymes with 2000-fold lower potency than they inhibit integrase in the bent-L pathway.  相似文献   

4.
Holliday junctions are central intermediates in site-specific recombination reactions mediated by tyrosine recombinases. Because these intermediates are extremely transient, only artificially assembled Holliday junctions have been available for study. We have recently identified hexapeptides that cause the accumulation of natural Holliday junctions of bacteriophage lambda Integrase (Int)-mediated reactions. We now show that one of these peptides acts after the first DNA cleavage event to stabilize protein-bound junctions and to prevent their resolution. The peptide acts before the step affected by site affinity (saf) mutations in the core region, in agreement with a model that the peptide stabilizes the products of strand exchange (i.e. Holliday junctions) while saf mutations reduce ligation of exchanged strands.Strand exchange events leading to Holliday junctions in phage lambda integration and excision are asymmetric, presumably because interactions between Int and some of its core-binding sites determine the order of strand cleavage. We have compared the structure of Holliday junctions in one unidirectional and in two bidirectional Int-mediated pathways and show that the strand cleavage steps are much more symmetric in the bidirectional pathways. Thus Int-DNA interactions which determine the order of top and bottom strand cleavage and exchange are unique in each recombination pathway.  相似文献   

5.
Phage lambda Integrase (Int) is the prototype of the so-called integrase family of conservative site-specific recombinases, which includes Cre and FLP. The natural function of Int is to execute integration and excision of the phage into and out of the Escherichia coli genome, respectively. In contrast to Cre and FLP, however, wild-type Int requires accessory proteins and DNA supercoiling of target sites to catalyze recombination. Here, we show that two mutant Int proteins, Int-h (E174 K) and its derivative Int-h/218 (E174 K/E218 K), which do not require accessory factors, are proficient to perform intramolecular integrative and excisive recombination in co-transfection assays inside human cells. Intramolecular integrative recombination is also detectable by Southern analysis in human reporter cell lines harboring target sites attB and attP as stable genomic sequences. Recombination by wild-type Int, however, is not detectable by this method. The latter result implies that eukaryotic co-factors, which could functionally replace the prokaryotic ones normally required for wild-type Int, are most likely not present in human cells.  相似文献   

6.
The integrase protein of bacteriophage lambda (Int) catalyzes site-specific recombination between lambda phage and Escherichia coli genomes. Int is a tyrosine recombinase that binds to DNA core sites via a C-terminal catalytic domain and to a collection of arm DNA sites, distant from the site of recombination, via its N-terminal domain. The arm sites, in conjunction with accessory DNA-bending proteins, provide a means of regulating the efficiency and directionality of Int-catalyzed recombination. Recent crystal structures of lambda Int tetramers bound to synaptic and Holliday junction intermediates, together with new biochemical data, suggest a mechanism for the allosteric control of the recombination reaction through arm DNA binding interactions.  相似文献   

7.
Higher-order nucleoprotein complexes often stabilize catalytic proteins in appropriate conformations for optimal activity and contribute to regulation during reactions requiring association of proteins and DNA. Formation of such complexes, known as intasomes, is required for site-specific recombination catalysed by bacteriophage Lambda Integrase protein (Int). Int-catalysed recombination is regulated by a second bacteriophage-encoded protein, Excisionase (Xis), which both stimulates excision and inhibits integration. To exert its effect, Xis binds co-operatively with Int, thereby inducing and stabilizing a DNA bend that alters the intasome structures formed during recombination. A rare int mutant, int 2268 ts, was reported (Enquist, L.W. and Weisberg, R.A. (1984) Mol Gen Genet 195: 62-69) to be more defective for excision than integration. Here, we have determined that this mutant Int protein contains an E47K substitution, and that the resultant excision-specific defect is due, at least in part, to destabilized interactions between Int and Xis. Analysis of several engineered substitutions at Int position 47 showed that a negatively charged residue is required for co-operative DNA binding between Int and Xis, and suggest that the Int-E47 residue may contact Xis directly. Substitutions at Int position 47 also affect co-operative binding among Int proteins at arm-type DNA sites, and thereby reduce the efficiency of both integration and excision. Collectively, these results suggest that a single surface of the Int amino-terminal domain mediates two alternate types of co-operative binding interactions.  相似文献   

8.
Mutant lambda integrases catalyze site-specific DNA recombination in the absence of accessory factors IHF, XIS, and negative DNA supercoiling. Here we investigate the effects that a human cellular environment exerts on these reactions in order to (i) gain further insights into mechanistic aspects of recombination in eukaryotic cells and (ii) to further develop the Int system for biotechnological applications. First, we compared intra- and intermolecular integrative as well as excisive recombination pathways on episomal substrates after co-transfection with recombinase expression vectors. Our results demonstrate that, within 24 hours after transfection, intermolecular recombination by mutant integrase is at least as efficient as intramolecular recombination. Second, a significant intermolecular recombination activity was observed between two copies of a recombination site containing only the 21 bp comprising core-type DNA sequence. This basic activity was stimulated several-fold when arm-type DNA sequences were present in addition to core sites. Therefore, one recombination pathway in human cells involves mutant integrases bound solely at core sites, which is reminiscent of the Flp/FRT and Cre/loxP pathways. The stimulatory effect of arm-type sequences could be explained by an increase in integrase concentration in the vicinity of core sites. We show, in addition, that an N-terminal truncated mutant integrase exhibited only a very weak recombinogenic activity in a eukaryotic background. This result strengthens a functional role for the N-terminal domain in recombination in addition to its arm-type DNA-binding activity. Finally, we demonstrate that low level integrative recombination by wild-type integrase is stimulated when purified integration host factor is co-transfected. This corroborates our previous conclusion that sufficient amounts of eukaryotic protein co-factors, which could functionally replace IHF, are not present in human cells. It also provides a potential means to control site-specific recombination in eukaryotic cells.  相似文献   

9.
Bacteriophage lambda integrase (Int) is a versatile site-specific recombinase. In concert with other proteins, it mediates phage integration into and excision out of the bacterial chromosome. Int recombines intramolecular sites in inverse or direct orientation or sites on separate DNA molecules. This wide spectrum of Int-mediated reactions has, however, hindered our understanding of the topology of Int recombination. By systematically analyzing the topology of Int reaction products and using a mathematical method called tangles, we deduce a unified model for Int recombination. We find that, even in the absence of (-) supercoiling, all Int reactions are chiral, producing one of two possible enantiomers of each product. We propose that this chirality reflects a right-handed DNA crossing within or between recombination sites in the synaptic complex that favors formation of right-handed Holliday junction intermediates. We demonstrate that the change in linking number associated with excisive inversion with relaxed DNA is equally +2 and -2, reflecting two different substrates with different topology but the same chirality. Additionally, we deduce that integrative Int recombination differs from excisive recombination only by additional plectonemic (-) DNA crossings in the synaptic complex: two with supercoiled substrates and one with relaxed substrates. The generality of our results is indicated by our finding that two other members of the integrase superfamily of recombinases, Flp of yeast and Cre of phage P1, show the same intrinsic chirality as lambda Int.  相似文献   

10.
Aims:  To investigate if the site-specific tyrosine integrase (Int) from phage P2 has features that would make it interesting for use of gene transfer into eukaryotic cells. These include the possibility of promoting recombination with a nonphage sequence, abolishing the requirement for the bacterial DNA-binding and -bending protein integration host factor (IHF), and localization to the nucleus of eukaryotic cells.
Methods and Results:  We show that the Int protein catalyzes site-specific recombination using a human sequence in Escherichia coli and in vitro although not as efficiently as with the wild-type bacterial sequence, and that insertion of high mobility group recognition boxes in the phage attachment site substrate abolish the requirement of IHF and allows efficient recombination in vitro in a eukaryotic cell extract. Furthermore, we show by fluorescence that the Int protein contains a functional intrinsic nuclear localization signal, localizing it to the nucleus in both HeLa and 293 cells.
Conclusions:  We conclude that P2 Int may be a potential tool for site-specific integration of genes into the human chromosome.
Significance and Impact of the Study:  The study implies the possibility of using multiple prokaryotic Int proteins with different specific integration sites in human cells for future gene therapy programmes.  相似文献   

11.
Synaptic intermediates promoted by the FLP recombinase   总被引:3,自引:0,他引:3  
  相似文献   

12.
The bacteriophage lambda integrase catalyzes four site-specific recombination pathways with distinct protein and DNA requirements and nucleoprotein intermediates. Some of these intermediates are very transient and difficult to obtain in significant amounts, due to the high efficiency and processivity of integrase, the lack of requirements for external energy factors or metal ions, and the highly reversible nature of each of the intermediates. We have previously used mixture-based combinatorial libraries to identify hexapeptides that trap 40-60% of recombination substrates at the Holliday junction stage of the reaction. These inhibitors discriminate between the four pathways, blocking one of them (bent-L recombination) more severely than the others and blocking the excision pathway least. We presume that these differences reflect specific conformational differences of the nucleoprotein intermediates in each pathway. We have now identified new inhibitors of the excision pathway. One of these, WRWYCR, is over 50-fold more potent at inhibiting excision than the previously identified peptides. This peptide stably traps Holliday junction complexes in all recombination pathways mediated by integrase as well as Cre. This finding and other data presented indicate that the peptide's target is a common feature shared by the Holliday junction complexes assembled by tyrosine recombinases. We have taken advantage of reversible inhibition by the active peptides to develop a new assay for Holliday junction resolution. This assay is particularly useful for determining junction resolution rates in cases where complexes directly assembled on junction substrates undergo little or no catalysis.  相似文献   

13.
Site-specific recombination catalyzed by bacteriophage λ integrase (Int) is essential for establishment and termination of the viral lysogenic life cycle. Int is the archetype of the tyrosine recombinase family whose members are responsible for DNA rearrangement in prokaryotes, eukaryotes and viruses. The mechanism regulating catalytic activity during recombination is incompletely understood. Studies of tyrosine recombinases bound to their target substrates suggest that the C-termini of the proteins are involved in protein–protein contacts that control the timing of DNA cleavage events during recombination. We investigated an Int truncation mutant (W350) that possesses enhanced topoisomerase activity but greater than 100-fold reduced recombination activity. Alanine scanning mutagenesis of the C-terminus indicates that two mutants, W350A and I353A, cannot perform site-specific recombination although their DNA binding, cleavage and ligation activities are at wild-type levels. Two other mutants, R346A and R348A, are deficient solely in the ability to cleave DNA. To explain these results, we have constructed a homology-threaded model of the Int structure using a Cre crystal structure. We propose that residues R346 and R348 are involved in orientation of the catalytic tyrosine that cleaves DNA, whereas W350 and I353 control and make intermolecular contacts with other Int proteins in the higher order recombination structures known as intasomes. These results suggest that Int and the other tyrosine recombinases have evolved regulatory contacts that coordinate site-specific recombination at the C-terminus.  相似文献   

14.
Bacteriophage lambda uses site-specific recombination to move its DNA into and out of the Escherichia coli genome. The recombination event is mediated by the phage-encoded integrase (Int) at short DNA sequences known as attachment ( att ) sites. Int catalyzes recombination via at least four distinct pathways, distinguishable by their requirements for accessory proteins and by the sequence of their substrates. The simplest recombination reaction catalyzed by Int does not require any accessory proteins and takes place between two attL sites. This reaction proceeds through an intermediate known as the straight-L bimolecular complex (SL-BMC), a stable complex which contains two attL sites synapsed by Int. We have investigated the orientation of the two substrates in the SL-BMC with respect to each other using two independent direct methods, a ligation assay and visualization by atomic force microscopy (AFM). Both show that the two DNA substrates in the complex are arranged in a tetrahedral or nearly square planar alignment skewed towards parallel. The DNA molecules in the complex are bent.  相似文献   

15.
The tyrosine family site-specific recombinases, in contrast to the related type I topoisomerases, which act as monomers on a single DNA molecule, rely on multi-protein complexes to synapse partner DNAs and coordinate two sequential strand exchanges involving four nicking-closing reactions. Here, we analyze three mutants of the catalytic domain of lambda integrase (Int), A241V, I353M and W350ter that are defective for normal recombination, but possess increased topoisomerase activity. The mutant enzymes can carry out individual DNA strand exchanges using truncated substrates or Holliday junctions, and they show more DNA-cleavage activity than wild-type Int on isolated att sites. Structural modeling predicts that the substituted residues may destabilize interactions between the C-terminal beta-strand (beta7) of Int and the core of the protein. The cleavage-competent state of Int requires the repositioning of the nucleophile (Y342) located on beta6 and the catalyst K235 located on the flexible beta2-beta3 loop, relative to their positions in a crystal structure of the inactive conformation. We propose that the anchoring of beta7 against the protein core restrains the movement of Tyr342 and/or Lys235, causing an attenuation of cleavage activity in most contexts. Within a bona fide recombination complex, the release of strand beta7 would allow Tyr342 and Lys235 to assume catalytically active conformations in coordination with other Int protomers in the complex. The loss of beta7 packing by misalignment or truncation in the mutant proteins described here causes a loss of regulated activity, thereby favoring DNA cleavage activity in monomeric complexes and forfeiting the coordination of strand-exchange necessary for efficient recombination.  相似文献   

16.
S E Nunes-Düby  L Matsumoto  A Landy 《Cell》1989,59(1):197-206
The early events in site-specific excisive recombination were studied with phage lambda half-att sites that have no DNA to one side of the strand exchange region; they carry a single core-type integrase binding site and either P or P' arm flanking DNA. These half-attR and half-attL sites exhibit normal properties for the initial (covalent) top-strand transfer and form stable intermediates independent of later steps in the reaction. With these novel substrates we show that Xis specifically promotes the first strand exchange and that attL enhances Int cleavage at the top-strand site of attR. It is also shown that synapsis and initial strand transfers do not require DNA-DNA pairing but are mediated by protein-protein and protein-DNA interactions. These involve the two top-strand Int binding sites (required for the first strand exchange) and, in addition, one of the two bottom-strand sites (C') responsible for the second strand exchange.  相似文献   

17.
Under physiological conditions, integration of lambda DNA into the Escherichia coli chromosome requires the direct participation of only two proteins, the viral int gene product and E. coli integration host factor (IHF). A variant of the int gene has been isolated that permits integrative recombination in cells mutant for one of the two subunits of IHF (Miller, H.I., Mozola, M.A., and Friedman, D.I. (1980) Cell 20, 721-729). In the present work, we have purified Int-h, the product of this variant gene. In contrast to the wild-type int gene product (Int+), which produces almost no recombinants in the absence of IHF, purified Int-h protein sponsors reduced but significant levels of integrative recombination in the absence of any E. coli supplement. This shows that the int gene encodes all the information necessary for the elementary steps in recombination and implies that IHF functions as an accessory protein. When supplemented by IHF, recombination promoted by Int-h resembles that promoted by Int+ in kinetics, stoichiometry of Int and IHF, and nature of the recombinant product. Under these conditions, Int-h uses supercoiled DNA more effectively than nonsupercoiled DNA as a substrate for recombination, as does Int+. However, in the absence of IHF, Int-h recombines supercoiled and nonsupercoiled substrates identically, indicating that IHF is an important part of the mechanism that senses the supercoiled state of the substrate DNA during recombination. A surprising difference in recombination carried out by Int-h in the presence or absence of IHF concerns the degree to which sites on the same circle recombine with one another as opposed to sites on sister molecules. In the presence of IHF, Int-h favors intramolecular recombination, as does Int+. However, in the absence of IHF, Int-h almost exclusively promotes intermolecular recombination.  相似文献   

18.
Site-specific recombination by phages lambda and P22 is carried out by multiprotein-DNA complexes. Integration host factor (IHF) facilitates lambda site-specific recombination by inducing DNA bends necessary to form an active recombinogenic complex. Mutants lacking IHF are over 1,000-fold less proficient in supporting lambda site-specific recombination than wild-type cells. Although the attP region of P22 contains strong IHF binding sites, in vivo measurements of integration and excision frequencies showed that infecting P22 phages can perform site-specific recombination to its maximum efficiency in the absence of IHF. In addition, a plasmid integration assay showed that integrative recombination occurs equally well in wild-type and ihfA mutant cells. P22 integrative recombination is also efficient in Escherichia coli in the absence of functional IHF. These results suggest that nucleoprotein structures proficient for recombination can form in the absence of IHF or that another factor(s) can substitute for IHF in the formation of complexes.  相似文献   

19.
Bacteriophage lambda site-specific recombination comprises two overall reactions, integration into and excision from the host chromosome. Lambda integrase (Int) carries out both reactions. During excision, excisionase (Xis) helps Int to bind DNA and introduces a bend in the DNA that facilitates formation of the proper excisive nucleoprotein complex. The carboxyl-terminal alpha-helix of Xis is thought to interact with Int through direct protein-protein interactions. In this study, we used gel mobility shift assays to show that the amino-terminal domain of Int maintained cooperative interactions with Xis. This finding indicates that the amino-terminal arm-type DNA binding domain of Int interacts with Xis.  相似文献   

20.
To establish a lysogenic lifestyle, the temperate bacteriophage φC31 integrates its genome into the chromosome of its Streptomyces host, by site-specific recombination between attP (the attachment site in the phage DNA) and attB (the chromosomal attachment site). This reaction is promoted by a phage-encoded serine recombinase Int. To return to the lytic lifestyle, the prophage excises its DNA by a similar Int-mediated reaction between the recombinant sites flanking the prophage, attL and attR. φC31 Int has been developed into a popular experimental tool for integration of transgenic DNA into the genomes of eukaryotic organisms. However, until now it has not been possible to use Int to promote the reverse reaction, excision. In many other phages, the presence of a recombination directionality factor (RDF) protein biases the phage-encoded integrase towards prophage excision, whereas absence of the RDF favours integration; but the φC31 RDF had proved elusive. In this issue of Molecular Microbiology, Khaleel et al. (2011) report the identification and purification of the φC31 RDF, and show that it both promotes excision and inhibits integration by direct protein-protein interactions with Int itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号