首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
缺氮和复氮对菘蓝幼苗生长及氮代谢的影响   总被引:1,自引:0,他引:1  
对基质育苗后水培的菘蓝进行缺氮与复氮处理,分析其生长情况及氮代谢产物含量的变化,探讨缺氮和复氮对菘蓝幼苗生长及氮代谢的影响,以提高菘蓝产量和品质以及栽培过程中的氮素利用效率。结果显示:(1)正常供氮条件下,菘蓝幼苗的叶绿素含量、谷氨酰胺合成酶(GS)活性、硝态氮含量、靛玉红含量为最高,而其株高、主根直径、根的鲜重与干重、叶的鲜重与干重、根系活力均最小。(2)缺氮处理增加了菘蓝幼苗的主根直径和根干重,提高其根系活力和硝酸还原酶(NR)活性,促进游离氨基酸在叶中的积累;但降低了GS的活性,也降低了叶中硝态氮、可溶性蛋白、靛玉红及根中游离氨基酸的含量;缺氮对叶中靛蓝的含量无明显影响。(3)复氮处理增加了菘蓝幼苗的株高、主根长、根鲜重、叶鲜重、叶干重,提高了其根系活力,降低了NR和GS的活性;与对照相比,复氮降低了叶中硝态氮含量,提高了叶中可溶性蛋白、靛蓝及根中游离氨基酸的含量,但对叶中游离氨基酸和靛玉红含量影响较小。研究表明,缺氮后再复氮有利于菘蓝幼苗叶的生长,同时有利于增加其叶内靛蓝含量,从而提高其产量和品质。  相似文献   

2.
Palmer  C. E. 《Plant & cell physiology》1985,26(6):1083-1091
Treatment of potato plants grown in nutrient solution with 3.8µM ABA resulted in reduced soluble protein in roots andin leaves at 24 h, but not in stems. This treatment reducedin vivo nitrate reductase activity in all organs for about 48h with the most pronounced reduction occurring in the roots.Excised root and leaf segments from plants treated with ABAfor 24, 48 and 72 h absorbed significantly more 14C leucine,compared to the control but the percent incorporation into proteinwas not altered in roots. In response to ABA total free amino nitrogen in leaves was lowerat 5 and 72 h and in stems at 72 h. Amino nitrogen content ofroots was enhanced by ABA at 5, 24 and 72 h due to generallyhigher levels of aspartate, serine, glutamate, proline and ammonia.There was no consistent relationship between ABA suppressionof nitrate reductase activity and ammonia or specific aminoacid (except proline) levels in leaves and stems. The increasedfree amino nitrogen levels in response to the hormone may bethe result of impaired NO3– reduction rather than thecause. The results of protein synthesis studies and solubleprotein content suggest that ABA inhibition of nitrate reductaseis not due to general inhibition of protein synthesis and mayinvolve specific inhibition of nitrate reductase protein synthesis. 1 Contribution No. 684, Department of Plant Science, Universityof Manitoba.  相似文献   

3.
Lawlor, D. W., Boyle, F. A., Kendall, A. C. and Keys, A. J.1987. Nitrate nutrition and temperature effects on wheat: Enzymecomposition, nitrate and total amino acid content of leaves.—J.exp. Bot. 38: 378–392. Wheat plants were grown in controlled environments in two temperatureregimes with two rates of nitrate fertilization. In some experimentstwo light intensities were combined with the nitrogen and temperaturetreatments. The composition of the third leaf was studied fromsoon after emergence until early senescence. The amounts ofchlorophyll, soluble protein, ribulose bisphosphate carboxylase-oxygenase(RuBPc-o) protein, nitrate, and total amino acids were measuredtogether with the activities of RuBPc-o, fructose- 1,6-bisphosphatase,glycolate oxidase, carbonic anhydrase, nitrate reductase, glutaminesynthetase and serine- and glutamate-glyoxylate aminotransferases.Additional nitrate supply increased the amounts, per unit leafarea, of chlorophyll, total soluble protein and RuBPc-o proteinand the activities of all the enzymes. The ratio of RuBP carboxylaseto RuBP oxygenase activity, when measured at constant CO2/O2ratio and temperature, was unaffected by growth conditions orleaf age. Leaves grown at the lower temperature, especiallywith more nitrate, contained much more soluble protein, nitratereductase, fructose bisphosphatase and free amino acids perunit area than the plants grown in the warmer conditions. However,young leaves grown in the warm contained more nitrate than thosegrown in the cool. Amounts of protein, amino acids and chlorophylland most enzyme activities reached maxima near full leaf expansionand decreased with age; additional nitrate slowed the decreaseand senescence was delayed. Nitrate content and nitrate reductaseactivities were highest in leaves before full expansion andthen fell rapidly after full expansion. Increased light intensityincreased the content of RuBPc-o protein at the higher rateof nitrate supply. Chloroplast components and, to a lesser extent,peroxisomal enzymes associated with photosynthetic nitrogenassimilation changed in proportion with different treatmentsbut nitrate reductase activity was not closely related to chloroplastenzymes. Control of tissue composition in relation to environmentalconditions is discussed. Key words: Nitrate nutrition, temperature, wheat, enzyme, amino acid, leaves, ribulose bisphosphate carboxylase oxygenase, nitrate reductase  相似文献   

4.
氮素水平对花生氮素代谢及相关酶活性的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
 在大田高产条件下研究了氮素水平对花生(Arachis hypogaea)可溶性蛋白质、游离氨基酸含量及氮代谢相关酶活性的影响, 结果表明, 适当提高氮素水平既能增加花生各器官中可溶性蛋白质和游离氨基酸的含量, 又能提高硝酸还原酶、谷氨酰胺合成酶和谷氨酸脱氢酶等氮素同化酶的活性, 使其达到同步增加; 氮素水平过高虽能提高硝酸还原酶和籽仁蛋白质含量, 但谷氨酰胺合成酶(GS)和谷氨酸脱氢酶(GDH)的活性下降; N素施肥水平不改变花生植株各器官中可溶性蛋白质、游离氨基酸含量以及硝酸还原酶(NR)、谷氨酰胺合成酶、谷氨酸脱氢酶活性的变化趋势, 但适量施N (A2和A3处理)使花生各营养器官中GS、GDH活性提高; 氮素水平对花生各叶片和籽仁中GS、GDH活性的高低影响较大, 但对茎和根中GDH活性大小的影响较小。  相似文献   

5.
Barley plants (Hordeum vulgare L. cv. Mazurka) were grown inaerated solution cultures with 2 mM or 8 mM inorganic nitrogensupplied as nitrate alone, ammonium alone or 1:1 nitrate+ammonium.Activities of the principal inorganic nitrogen assimilatoryenzymes and nitrogen transport were measured. Activities ofnitrate and nitrite reductases, glutamine synthetase and glutamatesynthase were greater in leaves than in roots but glutamatedehydrogenase was most active in roots. Only nitrate and nitritereductases changed notably (4–10 times) in response tothe different nitrogen treatments. Nitrate reductase appearedto be rate-limiting for nitrate assimilation to glutamate inroots and also in leaves, where its total in vitro activitywas closely related to nitrate flux in the xylem sap and wasslightly in excess of that needed to reduce the transportednitrate. Xylem nitrate concentration was 13 times greater thanthat in the nutrient solution. Ammonium nitrogen was assimilatedalmost completely in the roots and the small amount releasedinto the xylem sap was similar for the nitrate and the ammoniumtreatments. The presence of ammonium in the nutrient decreasedboth export of nitrate to the xylem and its accumulation inleaves and roots. Nitrate was stored in stem bases and was releasedto the xylem and thence to the leaves during nitrogen starvation.In these experiments, ammonium was assimilated principally inthe roots and nitrate in the leaves. Any advantage of this divisionof function may depend partly on total conversion of inorganicnitrogen to amino acids when nitrate and ammonium are givenin optimal concentrations. Hordeum vulgare L., barley, nitrate, ammonium, nitrate reductase, nitrite reductase, glutamine synthetase, glutamate synthase, glutamate dehydrogenase, nitrogen transport  相似文献   

6.
STEER  B. T. 《Annals of botany》1982,49(2):191-198
Species differ in the relationship of nitrate reductase activityto nitrate uptake. In Capsicum annuum different diurnal patternsof leaf nitrate reductase activity and nitrate uptake have beenreported. As a consequence, the relationship of free nitratein the plant to nitrate supplied has a higher level of significancethan has reduced nitrogen to nitrate supplied. In Zea mays ithas been reported that leaf nitrate reductase activity respondsdirectly to nitrate translocation to the leaf and in this speciesthe relationship of greatest significance is reduced nitrogencontent to nitrate supplied. In both species, and also in Cucumis melo, the proportion oftotal plant free nitrate and reduced nitrogen in the roots decreases,and in the stem increases, with increasing nitrate supplied. The accumulation of free nitrate in leaves is accompanied bya quantitatively different relationship between reduced nitrogenand dry weight compared to leaves not accumulating nitrate. Capsicum annuum. L., Cucumis melo L., melon, Zea mays L., maize, sweet corn, nitrate reductase, nitrate uptake  相似文献   

7.
With the aims (1) to test whether the different natural occurrence of twoPlantago species in grasslands is explained by a different preference of the species for nitrate or ammonium; (2) to test whether the different occurrence is explained by differences in the flexibility of the species towards changes in the nitrogen form; (3) to find suitable parameters as a tool to study ammonium and nitrate utilization of these species at the natural sites in grasslands, plants ofPlantago lanceolata andP. major ssp.major were grown with an abundant supply of nitrate, ammonium or nitrate+ammonium as the nitrogen source (0.5 mM). The combination of ammonium and nitrate gave a slightly higher final plant weight than nitrate or ammonium alone. Ammonium lowered the shoot to root ratio inP. major. Uptake of nitrate per g root was faster than that of ammonium, but from the mixed source ammonium and nitrate were taken up at the same rate. In vivo nitrate reductase activity (NRA) was present in both shoot and roots of plants receiving nitrate. When ammonium was applied in addition to nitrate, NRA of the shoot was not affected, but in the root the activity decreased. Thus, a larger proportion of total NRA was present in the shoot than with nitrate alone. In vitro glutamate dehydrogenase activity (GDHA) was enhanced by ammonium, both in the shoot and in the roots.In vitro glutamine synthetase activity (GSA) was highest in roots of plants receiving ammonium. Both GDHA and GSA were higher inP. lanceolata than inP. major. The concentration of ammonium in the roots increased with ammonium, but it did not accumulate in the shoot. The concentration of amino acids in the roots was also enhanced by ammonium. Protein concentration was not affected by the form of nitrogen. Nitrate accumulated in both the shoot and the roots of nitrate grown plants. When nitrate in the solution was replaced by ammonium, the nitrate concentration in the roots decreased rapidly. It also decreased in the shoot, but slowly. It is concluded that the nitrogen metabolism of the twoPlantago species shows a similar response to a change in the form of the nitrogen source, and that differences in natural occurrence of these species are not related to a differential adaptation of nitrogen metabolism towards the nitrogen form. Suitable parameters for establishing the nitrogen source in the field are thein vivo NRA, nitrate concentrations in tissues and xylem exudate, and the fraction of total reduced nitrogen in the roots that is in the soluble form, and to some extent thein vitro GDHA and GSA of the roots. Grassland Species Research Group. Publ. no 118.  相似文献   

8.
Summary Woody plants growing in cerrado and forest communities of south-east Brasil were found to have low levels of nitrate reductase activity in their leaves suggesting that nitrate ions are not an important nitrogen source in these communities. Only in the leaves of species growing in areas of disturbance, such as gaps and forest margins, were high levels of nitrate reductase present. When pot-grown plants were supplied with nitrate, leaves and roots of almost all species responded by inducing increased levels of nitrate reductase. Pioneer or colonizing species exhibited highest levels of nitrate reductase and high shoot: root nitrate reductase activities. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase were present in leaves and roots of the species examined.15N-labelled nitrate and ammonium were used to compare the assimilatory characteristics of two species:Enterolobium contortisiliquum, with a high capacity to reduce nitrate, andCalophyllum brasiliense, of low capacity. The rate of nitrate assimilation in the former was five times that of the latter. Both species had similar rates of ammonium assimilation. Results for eight species of contrasting habitats showed that leaf nitrogen content increased in parallel with xylem sap nitrogen concentrations, suggesting that the ability of the root system to acquire, assimilate or export nitrate determines shoot nitrogen status. These results emphasise the importance of nitrogen transport and metabolism in roots as determinants of whole plant nitrogen status.  相似文献   

9.
The assimilation and transport of 15N-labelled ammonium nitrogenin rice plants (Oryza sativa L.) was studied. Plants assimilatedlarge amounts of nitrogen from labelled ammonium into theiramides and amino acids, particularly in the roots and stem,at the end of a 4-day 15N feeding and 10 days later in the upperleaves, especially in the blades. Although the incorporationof 15N into all the nitrogen fractions of the newly emergedpanicle was evident, it was particularly pronounced in the amidesand amino acids of the soluble fractions. The upper leaves hada greater 15N incorporation in their organic N-fractions thandid the lower ones. Amides and amino acids are considered tobe the main forms of nitrogen transported to the shoot fromthe ammonium assimilated in the roots. The transport of theorganic forms of nitrogen was possibly greater to the upperleaves than to the lower ones. The nitrite fraction had more 15N than did the nitrate fractionin all parts of the plant, particularly in the upper leaf blades.It appeared that some of the ammonia might have been oxidizedto nitrite, then to nitrate in some parts of the plant; probablyin the upper leaves. The synthesis of protein and nucleic acid occurred rapidly inthe upper leaves, especially in the blades, also in the rootsas evidenced by the considerable incorporation of 15N in theinsoluble fractions of these parts. The variation in 15N-distribution,during the 10 days, in the different plant parts suggests thatthe nitrogen incorporated during protein synthesis in the rootsand tillers was remobilized and transported to the upper partsof the shoot. A concept for the transport of organic nitrogenouscompounds from the roots to shoot through the phloem and xylemof the rice plant stem is discussed. (Received May 11, 1974; )  相似文献   

10.
Nitrogen assimilation and transport in carob plants   总被引:1,自引:0,他引:1  
Most of the nitrate reductase activity (80%;) in carob ( Ceratonia siliqua L. cv. Mulata) is localised in the roots. The nitrate concentration in the leaves is relatively low compared to that in the roots, suggesting that nitrate influx into the leaf may be a major factor limiting the levels of nitrate reductase in the shoot. Transport of nitrate from root to shoot appears limited by the entrance of nitrate into the xylem. In order to study this problem, we determined the nitrate concentrations and nitrate reductase activities along the roots of nitrate-grown plants, as well as the composition of the xylem sap and the nitrate levels in the leaves. Some of the the bypocotyl, in order to bypass the loading of nitrate into the xylem of the roots. The results show that the loading of nitrate into the xylem is a limiting step.
The cation and anion concentrations of nitrate- and ammonium-fed plants were similar, showing almost no production of organic anions. In both nitrate- and ammonium-fed plants, the transport of nitrogen from root to shoot was in the form of organic nitrogen compounds. The nitrate reductase activity in the roots was more than sufficient to explain all the efflux of OH into the root medium of nitrate-fed plants. In carob plants the K-shuttle may thus be operative to a limited extent only, corresponding to between 11 and 27%; of the nitrate taken up. Potassium seems to be the cation accompanying stored nitrate in the roots of carob seedlings, since they accumulate nearly stoichiometric amounts of K+ and NO3.  相似文献   

11.
Seasonal changes in several forms of nitrogen were investigatedin Coptis japonica, an evergreen rosette hemicryptophyte intemperate deciduous forest. The concentration of total nitrogenin rhizomes and roots decreased during the period of new shootgrowth from winter to spring. In the rhizomes, total solubleprotein stored by early summer decreased gradually until winter,coupled with an increase in free amino acids. Nitrogen was largelystored in free amino acids in the roots, especially during summer.The total soluble protein in current-year leaves decreased fromspring to summer and then increased during winter. The seasonalchanges in nitrogen components were coincident with the changein light-saturated photosynthetic rates recorded in a previousstudy. The ratio of total soluble protein to total nitrogendecreased from spring to summer and then increased from latesummer to winter in the current-year leaves. In contrast, chlorophyllcontent and the ratio of chlorophyll to total nitrogen werehigher in summer than in other seasons. The results indicatethat nitrogen was used in a manner that better utilizes thevery weak light in summer and the higher light intensities inother seasons. The major component of the free amino acid poolwas asparagine, in every organ throughout the season, exceptfor the senescent leaves. Since asparagine has a high N:C ratio,we suppose that the asparagine-dominated amino acid pool isadvantageous in the carbon-limited environment of the forestfloor.Copyright 1994, 1999 Academic Press Free amino acid composition, total nitrogen, total soluble protein, photosynthesis, evergreen hemicryptophyte  相似文献   

12.
The impact of low humidity in ambient air on water relations,nitrate uptake, and translocation of recently absorbed nitrogen,was investigated in 5-week-old tomato (Lycopersicon esculentumMill cv. Ailsa Craig) plants grown hydroponically in a completenutrient solution. Plants were subjected to dry air (relativehumidity 2–4% for 6 h. The transpiration rate increasedseveral-fold and the shoot water content decreased by almost20%, whereas root water content was unaffected. No effect onin vitro nitrate reductase (NR) activity was detected when usingan EDTA-contraining assay buffer. Replacement of EDTA with Mg2+revealed a significant decline in shoot NR activity, which suggestsphosphorylation of the enzyme during the stress treatment. Plantswere grown in a split-root system, in which one root half wasfed 15N-nitrate during the treatment, in order to determinenitrate uptake and translocation of recently absorbed nitrogenin the plants. Uptake of nitrate was substantially inhibited,but the proportion of absorbed 15N that was translocated tothe shoots was only slightly affected. In untreated plants,71% of the 15N recovered in roots had been retranslocated fromthe shoots, whereas in plants subjected to stress the deliveryof 15N from shoots to roots appeared to be completely inhibited.The data show that lowered humidity in air has significant effectson both uptake of nitrate as well as translocation of nitrogenwithin the plants. Some of these effects appear to be commonwith those observed in plants subjected to reduced water potentialsin the root environment and point to the possibility of theshoot water relations being highly influential on nitrogen uptakeand translocation. Key words: Air humidity, nitrate assimilation, nitrate reductase activity, nitrogen translocation, tomato, water stress  相似文献   

13.
Nitrogen re-mobilization and changes in free amino acids werestudied as a function of time in leaves, stubble, and rootsduring ryegrass (Lolium perenne L.) re-growth. Experiments with15N labelling clearly showed that during the first days nearlyall the nitrogen in new leaves came from organic nitrogen re-mobilizedfrom roots and stubble. On the days of defoliation, stubblehad the highest content of free amino acids with 23 mg per gdry weight against 15 mg and 14 mg in leaves and roots, respectively.The major amino acids in leaves were asparagine (23% of totalcontent in free amino acids), aminobutyrate, serine, glutamine,and glutamate (between 7% and 15%) whereas in roots and stubblethe contribution of amides was high, especially asparagine (about50%). Re-growth after cutting was associated with a rapid increaseof the free amino acid content in leaves, with a progressivedecrease in roots while stubble content remained virtually unchanged.In leaves, asparagine increased from the first day of re-growth,while the aspartate level remained unchanged and glutamine increasedstrongly on the first day but decreased steadily during thenext few days of re-growth. Asparagine in stubble and rootschanged in opposite directions: in stubble it tended to increasewhereas in roots it clearly decreased. In contrast, stubbleand roots showed a similar decrease in glutamine. In these twoplant parts, as in leaves, aspartate remained at a low level.Results concerning free amino acids are discussed with referenceto nitrogen re-mobilization from source organs (stubble androots) to the sink organ (regrowing leaves). Key words: Lolium perenne L, re-growth, nitrogen, free amino acids, glutamine, asparagine  相似文献   

14.
The supply of -naphthaleneacetic acid (NAA), to excised chicory roots induced the formation of lateral root meristems mainly localized proximal to the pre-existing apical root meristem, in a region which does not initiate any lateral roots in control conditions. Inhibition of root elongation and concomitant enlargement of the apices were also observed. Quantification of NAA and cytokinin levels showed that the most reproducible and significant changes occurring after the NAA treatment consisted of a decrease in the level of zeatin-O-glucoside conjugates. Hydrolysis of these conjugates might deliver free zeatin-type compounds which were consumed during the lateral root growth. After 5 d, control excised roots contained a high level of amino acids, mainly as asparagine and arginine, probably issued from proteolysis associated to a senescent-like process. Conversely, in the presence of NAA, neither accumulation of amino acids nor a decrease of the total protein content of the tissue could be detected. Newly initiated meristems expressed the nia gene which encodes nitrate reductase, the first enzyme of the nitrate assimilatory pathway. Thus the increased expression of nitrate reductase which was observed in excised roots of chicory supplied with NAA (Vuylsteker et al., 1997b) may be ascribed to lateral root formation and development. The reinduction of nitrate reduction activity was driven by the increased demand for reduced nitrogen. Thus, the nia gene is one of the genes expressed during the early stages of root meristem formation.Keywords: Auxins, chicory, in situ hybridization, lateral root, nitrate reductase.   相似文献   

15.
Abstract

The effects of salt stress on the contents of organic solutes and on the pattern of free amino acids were studied in leaves and roots of two maize genotypes, BR5033 (salt-tolerant) and BR5011 (salt-sensitive). In leaves and roots of salt-stressed plants, soluble amino-N increased with time when compared to the controls. Salt stress increased the soluble protein content only in leaves of BR5011. Salinity increased the content of the majority of the free amino acids in leaves and roots of genotypes studied. Results suggest the hypothesis of disturbances in translocation of N-containing compounds from shoot to root in the salt-sensitive genotype. Results also suggest that the accumulation of organic solutes, mainly in roots of BR5033, may have an important role in the tolerance of this genotype to salt stress.  相似文献   

16.
An investigation was made to study the assimilation and transportof 15N-labelled nitrate nitrogen in rice plant (Oryza sativaL.). Nitrogen from labelled nitrate at the end of plant feedingwas found mainly in nitrate form, and was more prevalent inroots, stem and leaf sheaths. The nitrite fraction had the nextlargest 15N enrichment. The 15NO3 assimilation in the newlyemerged panicle was mainly in amide and amino acid. The 15N-incorporation at day 0 was greatest in amino acid andnitrate of roots and decreased towards the stem and leaves.Incorporation in these fractions considerably decreased fromday 0 to day 10. Probably most of the nitrogen from the nitratesource was transported from the roots to the shoot in nitrateand amino acid forms. A decrease of 15N-incorporation in the soluble N fraction andincrease in the insoluble N fraction from day 0 to day 10 inplant parts, particularly the blades, suggested that proteinsynthesis occurred mostly in young parts of the shoot duringthis period. The marked variation in 15N distribution in differentparts of the plant during the 10 days indicated that the nitrogenin roots and tillers was probably remobilized and transportedto other parts, particularly the upper leaf blades. Ammonium and nitrate nitrogen transport in rice plant are compared. (Received May 11, 1974; )  相似文献   

17.
In order to investigate the effects of root hypoxia (1–2% oxygen) on the nitrogen (N) metabolism of tomato plants (Solanum lycopersicum L. cv. Micro-Tom), a range of N compounds and N-assimilating enzymes were performed on roots and leaves of plants submitted to root hypoxia at the second leaf stage for three weeks. Obtained results showed that root hypoxia led to a significant decrease in dry weight (DW) production and nitrate content in roots and leaves. Conversely, shoot to root DW ratio and nitrite content were significantly increased. Contrary to that in leaves, glutamine synthetase activity was significantly enhanced in roots. The activities of nitrate and nitrite reductase were enhanced in roots as well as leaves. The higher increase in the NH4+ content and in the protease activities in roots and leaves of hypoxically treated plants coincide with a greater decrease in soluble protein contents. Taken together, these results suggest that root hypoxia leaded to higher protein degradation. The hypoxia-induced increase in the aminating glutamate dehydrogenase activity may be considered as an alternative N assimilation pathway involved in detoxifying the NH4+, accumulated under hypoxic conditions. With respect to hypoxic stress, the distinct sensitivity of the enzymes involved in N assimilation is discussed.Key words: tomato, hypoxia, nitrogen, glutamine synthetase, protease, glutamate dehydrogenase  相似文献   

18.
Five-week-old wheat plants were exposed, under controlled environmental conditions, to 60 nl 1?115NO2 or to purified air. After 48 and 96 h of exposure, leaves, stalks and roots were analysed for 15N-enrichment in α-amino nitrogen of soluble, free amino acids. In addition, the in vitro nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NIR, EC 1.7.7.1) activities were determined in the leaves. NR activity in the leaves decreased continously during the 96-h exposure to purified air. In the leaves exposed to 15NO2, NR activity increased within the first 24 h, then decreased, and reached the level of controls after 96 h. NiR activity in leaves exposed to purified air was almost constant during the 96-h exposure. In leaves exposed to 15NO2, NiR activity increased within the first 48 h, then decreased, and reached the level of controls after 72 h, Exposure to 15NO2 enhanced the total content of soluble, free amino acids in all tissues analysed. Most of this increase was attributed to Glu in the leaves and to Asn plus Gln the α-amino group of soluble, free amino acids was observed in the leaves, the lowest enrichment in the roots. The main labelled amino compounds were Glu (with 8.0%15N enrichment compared to the control), γ-aminobutyric acid (GABA; 7.9%), Ala (7.2%). Ser (6.8%), Asp (5.5%) and Gln (4.6%). Appreciable incorporation of 15 into Asn was not found. After 96 h exposure to 15NO2 the 15N enrichment in the α-amino group of soluble, free amino acids in the leaves declined as compared to the values obtained after 48 h fumigation. The possible pathway and the time course of 15N incorporation into soluble, free amino acids from the 15NO2 absorbed are discussed.  相似文献   

19.
The effect of advanced meristem age on growth and accumulationof plant nitrogen (N) in potato (Solanum tuberosum L.) was studied.Etiolated plantlets, excised from sprouted, single-eye-containingcores from 7 and 19-month-old seed-tubers, were transplantedinto aerated nutrient culture. Rates of shoot and root dry matterand shoot soluble-N (which included nitrate-N) accumulationwere similar for plants from both meristem ages over a 30 dinterval of log-linear growth. The rate at which nitrate-N accumulatedwas consistently 17 per cent higher in shoots from 19-month-oldcompared to those from 7-month-old meristems. However, accumulationof free amino-N and soluble protein-N were 21 and 15 per centlower, respectively in shoots from 19-month-old meristems. Abuild-up of shoot nitrate, along with lower rates of accumulationof amino-N and soluble protein-N, suggests a lower capacityfor nitrate reduction during early growth of plants from oldermeristems. Furthermore, these effects can be attributed to age-inducedchanges in the meristem or bud tissue as the plants were separatedfrom the tuber tissue initially in the study. Long-term ageingof seed-potatoes apparently affects changes within meristemsthat translate into a lower capacity to accumulate reduced formsof nitrogen during early plant growth. Potatoes (Solanum tuberosum L.), meristem age, nitrogen metabolism, plant growth potential  相似文献   

20.
Nitrate assimilation was examined in two cultivars (Banner Winterand Herz Freya) of Vicia faba L. supplied with a range of nitrateconcentrations. The distribution between root and shoot wasassessed. The cultivars showed responses to increased applied nitrateconcentration. Total plant dry weight and carbon content remainedconstant while shoot: root dry weight ratio, total plant nitrogen,total plant leaf area and specific leaf area (SLA) all increased.The proportion of total plant nitrate and nitrate reductase(NR) activity found in the shoot of both cultivars increasedwith applied nitrate concentrations as did NO3: Kjeldahl-Nratios of xylem sap. The cultivars differed in that a greaterproportion of total plant NR activity occurred in the shootof cv. Herz Freya at all applied nitrate concentrations, andits xylem sap NO3: Kjeldahl-N ratio and SLA were consistentlygreater. It is concluded that the distribution of nitrate assimilationbetween root and shoot of V. faba varies both with cultivarand with external nitrate concentration. Vicia faba L., field bean, nitrate assimilation, nitrate reductase, xylem sap analysis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号