首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conversion of geranyl pyrophosphate to (-)-endo-fenchol is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. Incubation of (1R)-[2-14C,1-3H]- and (1S)-[2-14C,1-3H]geranyl pyrophosphate with a preparation of (-)-endo-fenchol cyclase (synthase) from common fennel (Foeniculum vulgare) gave labeled product of unchanged 3H:14C ratio in both cases, and each was dehydrated to a mixture of alpha- and beta-fenchene which were oxidized to the corresponding alpha- and beta-fenchocamphorones, again without change in isotope ratio. The location of the tritium label was deduced in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogen of the derived ketone. The findings indicated that the configuration at C1 of the substrate was retained in the enzymatic transformation to (-)-endo-fenchol which is entirely consistent with the syn-isomerization of geranyl pyrophosphate to (3R)-linalyl pyrophosphate and cyclization of the latter via the anti-endo-conformer. These absolute stereochemical elements of the reaction sequence were confirmed by the enzymatic conversion of (3R)-1Z-[1-3H]linalyl pyrophosphate to (-)-endo-fenchol and by the location of the tritium in the derived fenchocamphorones as before. The summation of the results fully defines the overall stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to (-)-endo-fenchol.  相似文献   

2.
The conversion of geranyl pyrophosphate to (+)-cis- and (+)-trans-sabinene hydrate by a partially purified cyclase from sweet marjoram (Majorana hortensis) is considered to proceed by the initial ionization and isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this enzyme-bound tertiary allylic intermediate to the monocyclic (+)-(4R)-alpha-terpinyl cation. A 1,2-hydride shift and a second cyclization with water capture of the resulting cation complete the reaction sequence. [6-3H, 14C]Geranyl pyrophosphate, coupled with selective chemical degradation of the resulting sabinene hydrate products, was employed to demonstrate the hydride shift, while separate testing of the linalyl pyrophosphate enantiomers confirmed the involvement of the (3R)-antipode in the cyclization and indicated the cyclization of linalyl pyrophosphate to be faster than the coupled isomerization-cyclization of the geranyl substrate. (1R)- and (1S)-[1-3H, 14C]geranyl pyrophosphates, in conjunction with stereoselective degradations of the biosynthetic products to locate the 3H, were exploited to deduce that configuration at C1 of the substrate was retained in the reaction. These findings suggest the isomerization of the geranyl substrate to be a suprafacial process and the cyclization of the (3R)-linalyl intermediate to proceed via the anti,endo-conformation consistent with the stereo-chemistry of other monoterpene cyclizations and with chemical model studies. Sulfonium ion analogs of the presumptive linalyl and alpha-terpinyl cationic intermediates of the isomerization-cyclization sequence were shown to be potent inhibitors of the enzymatic reaction (Ki = 0.3 and 2.8 microM, respectively), and inhibition was synergized by the presence of inorganic pyrophosphate, indicating that the enzyme recognized and bound more tightly to these ion-paired species than to either cationic or anionic partner alone. Additionally, the enzyme was capable of ionizing (solvolyzing) the noncyclizable substrate analogs 6,7-dihydrogeranyl pyrophosphate and 2,3-methanogeranyl pyrophosphate. These results define the overall stereochemistry of the coupled isomerization-cyclization to sabinene hydrate, demonstrate the 1,2-hydride shift, and confirm the electrophilic nature of this enzymatic reaction type.  相似文献   

3.
The conversion of geranyl pyrophosphate to (+)-alpha-pinene and to (-)-beta-pinene is considered to proceed by the initial isomerization of the substrate to (-)-(3R)- and to (+)-(3S)-linalyl pyrophosphate, respectively, and the subsequent cyclization of the anti, endo-conformer of these bound intermediates by mirror-image sequences which should result in the net retention of configuration at C1 of the geranyl precursor. Incubation of (1R)-[2-14C,1-3H]- and (1S)-[2-14C,1-3H]geranyl pyrophosphate with (+)-pinene cyclase and with (-)-pinene cyclase from common sage (Salvia officinalis) gave labeled (+)-alpha- and (-)-beta-pinene of unchanged 3H/14C ratio in all cases, and the (+)- and (-)-olefins were stereoselectively converted to (+)- and (-)-borneol, respectively, which were oxidized to the corresponding (+)- and (-)-isomers of camphor, again without change in isotope ratio. The location of the tritium was determined in each case by stereoselective, base-catalyzed exchange of the exo-alpha-hydrogens of these derived ketones. The results indicated that the configuration at C1 of the substrate was retained in the enzymatic transformations to the (+)- and (-)-pinenes, which is entirely consistent with the syn-isomerization of geranyl pyrophosphate to linalyl pyrophosphate, transoid to cisoid rotation, and anti, endo-cyclization of the latter. The absolute stereochemical elements of the antipodal reaction sequences were confirmed by the selective enzymatic conversions of (3R)- and (3S)-1Z-[1-3H]linalyl pyrophosphate to (+)-alpha-pinene and (-)-beta-pinene, respectively, and by the location of the tritium in the derived camphors as before. The summation of the results fully defines the overall stereochemistry of the coupled isomerization and cyclization of geranyl pyrophosphate to the antipodal pinenes.  相似文献   

4.
The conversion of geranyl pyrophosphate to (-)-endo-fenchol is considered to proceed by the initial isomerization of the substrate to (-)-(3R)-linalyl pyrophosphate and the subsequent cyclization of this bound intermediate. To test this stereochemical scheme, phosphatase-free preparations of (-)-endo-fenchol cyclase from fennel (Foeniculum vulgare M.) fruit were repeatedly incubated with a sample of (3RS)-[1-3H2]linalyl pyrophosphate until approximately 50% of this precursor was converted to the bicyclic monoterpenol end product. The residual linalyl pyrophosphate was isolated and enzymatically hydrolyzed to the free alcohol, linalool, which was resolved by chiral phase capillary gas-liquid chromatography of the derived threo and erythro mixture of 1,2-epoxides. The predominance of the (3S)-enantiomer in the residual substrate indicated that the (3R)-enantiomer was preferred for the cyclization to (-)-(1S)-endo-fenchol. This conclusion was subsequently confirmed by the preparation and direct testing of (3R)-1Z-[1-3H] linalyl pyrophosphate, which afforded a Km value lower than that observed for geranyl pyrophosphate and a relative velocity nearly three times higher. (3S)-1Z-[1-3H]Linalyl pyrophosphate was not an effective substrate for (-)-endo-fenchol biosynthesis but did, by an anomalous cyclization, give rise to low levels of the enantiomeric (+)-(1R)-endo-fenchol as well as to other products. These results support the proposed stereochemical model and also suggest that the isomerization step is rate limiting in the coupled isomerization-cyclization of geranyl pyrophosphate to (-)-endo-fenchol.  相似文献   

5.
A soluble enzyme preparation from the leaves of fennel (Foeniculum vulgare M.) has been shown to catalyze the cation-dependent cyclization of both geranyl pyrophosphate and neryl pyrophosphate to the bicyclic rearranged monoterpene l-endo-fenchol (R. Croteau, M. Felton, and R. Ronald, 1980 Arch. Biochem. Biophys.200, 524–533). To examine the possible presence of free intermediates between the acyclic precursors and fenchol, and to remove competing cyclase and pyrophosphatase activities, the soluble preparation was partially purified by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150 and ion exchange chromatography on O-diethylaminoethyl-cellulose. Activities for the cyclization of geranyl pyrophosphate and neryl pyrophosphate to fenchol were coincident on Chromatographic fractionation suggesting that the same enzyme was capable of cyclizing both acyclic substrates. No interconversion of the acyclic precursors was detected. Although bornyl pyrophosphate is a free intermediate in the biosynthesis of the related bicyclic monoterpenol borneol, both protein fractionation and isotopic dilution experiments ruled out endo-fenchyl pyrophosphate as a free intermediate in fenchol biosynthesis. Similarly, while construction of the fenchane skeleton was demonstrated to involve the rearrangement of an intermediate pinane skeleton, isotopic dilution experiments ruled out both optical antipodes of α-pinene, β-pinene, cis-2-pinanol, trans-2-pinanol, and the corresponding 2-pinyl pyrophosphates as free intermediates of the enzyme-catalyzed reaction. Furthermore, exhaustive search of the enzymatic reaction products provided no evidence to suggest the involvement of any free intermediate between the acyclic precursor and fenchol. The endo-fenchol synthetase has an apparent molecular weight of 60,000, shows a pH optimum near 7.0, and requires Mn2+ (1 mm) for catalytic activity. Co2+ can partially substitute for Mn2+, but other divalent cations are ineffective. The partially purified synthetase is inhibited by p-hydroxymercuribenzoate and by phenylglyoxal, and it exhibits a preference for geranyl pyrophosphate over neryl pyrophosphate as substrate. An integrated scheme is proposed for the cyclization and rearrangement catalyzed by fenchol synthetase.  相似文献   

6.
Tansy (Tanacetum vulgare L.) produces an essential oil containing the optically pure monoterpene ketone, (-)-camphor, as a major constituent. A soluble enzyme preparation from immature leaves of this plant converts the acyclic precursor [1-3H]geranyl pyrophosphate to the bicyclic monoterpene alcohol borneol in the presence of MgCl2, and oxidizes a portion of the borneol to camphor in the presence of a pyridine nucleotide. The identity of the major biosynthetic product as borneol was confirmed by chemical oxidation to camphor and crystallization of the derived oxime to constant specific radioactivity. The stereochemistry of the borneol was verified as the (-)-(1S,4S) isomer by oxidation to camphor, conversion to the corresponding ketal with D-(-)-2,3-butanediol, and separation of diastereoisomers by radio-gas-liquid chromatography. When enzyme reaction mixtures were treated with a mixture of acid phosphatase and apyrase, following an initial ether extraction of labeled borneol, additional quantities of borneol were generated, indicating the presence of a phosphorylated derivative of borneol. This water-soluble metabolite was prepared by large-scale enzyme incubations with [1-3H]geranyl pyrophosphate (plus phosphatase inhibitor), and the identity of the initial cyclization product was established as (-)-bornyl pyrophosphate by direct ion-exchange chromatographic analysis and enzymatic hydrolysis. The pathway for the formation of (-)-(1S,4S)-camphor was therefore identical to that previously demonstrated for the (+)-(1R,4R) isomer, involving cyclization of geranyl pyrophosphate to bornyl pyrophosphate, hydrolysis of this intermediate to borneol, and oxidation of the alcohol to the ketone. The labeling pattern of the product derived from [1-3H2, U-14C]geranyl pyrophosphate was determined by oxidation of the biosynthetic borneol to camphor and selective removal of tritium by exchange of the alpha hydrogens at C3 of the ketone. This labeling pattern was identical to that observed previously for the (+) isomer, suggesting the same mechanism of cyclization, but of opposite enantiospecificity. Some properties of the antipodal (+)- and (-)-bornyl pyrophosphate cyclases were compared.  相似文献   

7.
(1R)-1-3H-labeled and (1S)-1-3H-labeled geranyl pyrophosphate and neryl pyrophosphate were prepared from the corresponding 1-3H-labeled aldehydes by a combination of enzymatic and synthetic procedures. Following admixture with the corresponding 2-14C-labeled internal standard, each substrate was converted to (+)-bornyl pyrophosphate and (-)-bornyl pyrophosphate by cell-free enzyme preparations from sage (Salvia officinalis) and tansy (Tanacetum vulgare), respectively. Each pyrophosphate ester was hydrolyzed, and the resulting borneol was oxidized to camphor. The stereochemistry of labeling at C-3 of the derived ketone was determined by base-catalyzed exchange, taking advantage of the known selective exchange of the exo-alpha-protons. By comparison of such exchange rates to those of product generated from (1RS)-2-14C,1-3H2-labeled substrate, it was demonstrated that geranyl pyrophosphate was cyclized to bornyl pyrophosphate with net retention of configuration at C-1 of the acyclic precursor, whereas neryl pyrophosphate was cyclized to product with inversion of configuration at C-1. The observed stereochemistry is consistent with a reaction mechanism whereby geranyl pyrophosphate is first stereospecifically isomerized to linalyl pyrophosphate which, following rotation about C-2-C-3 to the cisoid conformer, cyclizes from the anti-endo configuration. Neryl pyrophosphate cyclizes either directly or via the linalyl intermediate without the attendant rotation.  相似文献   

8.
Enzymes from Salvia officinalis and Tanacetum vulgare leaf epidermis catalyze the conversion of the acyclic precursor geranyl pyrophosphate to the cyclic monoterpenes (+)- and (-)-bornyl pyrophosphate, respectively. The antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H] Linalyl pyrophosphate (3H:14C = 5.22) was tested as a substrate with the cyclases from both sources to determine the configuration of the cyclizing intermediate. This substrate yielded (-)-bornyl pyrophosphate with 3H:14C ratio greater than 31, indicating specific utilization of (+)-(3S)-linalyl pyrophosphate as predicted. With the (+)-bornyl pyrophosphate cyclase, the 3H:14C ratio of the product was about 4.16, indicating a preference for the (-)-(3R)-enantiomer, but the ability also to utilize (+)-(3S)-linalyl pyrophosphate. (3R)- and (3S)-[1Z-3H]Linalyl pyrophosphate were separately compared to the achiral precursors [1-3H] geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. All functional precursors afforded optically pure (-)-(1S,4S)-bornyl pyrophosphate with the T. vulgare-derived cyclase (as determined by chromatographic separation of diastereomeric ketals of the derived ketone camphor), and (+)-(3S)-linalyl pyrophosphate was the preferred substrate. With the (+)-bornyl pyrophosphate cyclase from S. officinalis, geranyl, neryl, and (-)-(3R)-linalyl pyrophosphates gave the expected (+)-(1R,4R)-stereoisomer as the sole product, and (-)-(3R)-linalyl pyrophosphate was the preferred substrate. However, (3S)-linalyl pyrophosphate yielded (-)-(1S,4S)-bornyl pyrophosphate, albeit at lower rates, indicating the ability of this enzyme to catalyze the anomalous enantiomeric cyclization.  相似文献   

9.
Cyclization of trans,trans-[1-3H2,12,13-14C]farnesyl pyrophosphate (2a) by a preparation of trichodiene synthetase isolated from the fungus, Trichothecium roseum, gave trichodiene (5a), which was shown by chemical degradation to retain both tritium atoms of the precursor at C-11. Incubation of 1S-[1-3H,12,13-14C]farnesyl pyrophosphate (2b) and 1R-[1-3H,12,13-14C]farnesyl pyrophosphate (2c) with trichodiene synthetase and degradation of the resulting labeled trichodienes, 5b and 5c, established that the displacement of the pyrophosphate moiety from C-1 of the precursor and formation of the new C-C bond in the formation of trichodiene takes place with net retention of configuration. These results are accounted for by an isomerization-cyclization mechanism involving the intermediacy of nerolidyl pyrophosphate (4).  相似文献   

10.
A partially purified enzyme (carbocyclase) from the flavedo of Citrus limonum formed α-pinene, β-pinene, limonene, and γ-terpinene from geranyl pyrophosphate (GPP) and neryl pyrophosphate. The maximum specific activities obtained were 7.0 and 3.6 nmol/ min/mg, respectively. Cross-inhibition by the two substrates were observed and the ability to utilize neryl pyrophosphate was almost completely lost with aging. Citronellyl pyrophosphate and dimethylallyl pyrophosphate were the most effective inhibitors of carbocyclase. Isopentenyl pyrophosphate, the monophosphate esters of nerol and geraniol, as well as inorganic pyrophosphate were much less effective inhibitors. The enzyme had an absolute requirement for Mn2+. It could be replaced with about 2% effectiveness by Mg2+ and Co2+. Kinetic studies showed that the observed reaction rate correlates with the calculated concentration of the GPP (Mn2+)2 species. Previous evidence with nonenzymatic reactions and the results presented support the view that the mechanism of carbocyclase may be the intramolecular analog of prenyltransferase.  相似文献   

11.
Previous studies with soluble enzyme preparations from sage (Salvia officinalis) demonstrated that the monoterpene ketone (+)-camphor was synthesized by the cyclization of neryl pyrophosphate to (+)-bornyl pyrophosphate followed by hydrolysis of this unusual intermediate to (+)-borneol and then oxidation of the alcohol to camphor (R. Croteau, and F. Karp, 1977, Arch. Biochem. Biophys.184, 77–86). Preliminary investigation of the (+)-bornyl pyrophosphate synthetase in crude preparations indicated that both neryl pyrophosphate and geranyl pyrophosphate could be cyclized to (+)-bornyl pyrophosphate, but the presence of high levels of phosphatases in the extract prevented an accurate assessment of substrate specificity. The competing phosphatases were removed by combination of gel filtration on Sephadex G-150, chromatography on hydroxylapatite, and chromatography on O-(diethylaminoethyl)-cellulose. In these fractionation steps, activities for the cyclization of neryl pyrophosphate and geranyl pyrophosphate to bornyl pyrophosphate were coincident, and on the removal of competing phosphatases, the synthetase was shown to prefer geranyl pyrophosphate as substrate (VKm for geranyl pyrophosphate was 20-fold that of neryl pyrophosphate). No interconversion of geranyl and neryl pyrophosphates was detected. The partially purified bornyl pyrophosphate synthetase had an apparent molecular weight of 95,000, and required Mg2+ for catalytic activity (Km for Mg2+ ~ 3.5 mm). Mn2+ and other divalent cations were ineffective in promoting the formation of bornyl pyrophosphate. The enzyme exhibited a pH optimum at 6.2 and was strongly inhibited by both p-hydroxymercuribenzoate and diisopropylfluorophosphate. Bornyl pyrophosphate synthetase is the first monoterpene synthetase to be isolated free from competing phosphatases, and the first to show a strong preference for geranyl pyrophosphate as substrate. A mechanism for the cyclization of geranyl pyrophosphate to bornyl pyrophosphate is proposed.  相似文献   

12.
Soluble enzyme preparations from sage (Salvia officinalis) leaves catalyze the hydrolysis of (+)-bornyl pyrophosphate to (+)-borneol, which is an essential step in the biosynthesis of the cyclic monoterpene (+)-camphor [(1R,4R)-bornan-2-one] in this tissue. Chromatography of the preparation on Sephadex G-150 allowed the separation of two regions of bornyl pyrophosphate hydrolase activity. One region was further separated into a pyrophosphate hydrolase and a monophosphate hydrolase by chromatography on hydroxylapatite, but the other contained pyrophosphate and monophosphate hydrolase activities which were inseparable by this or any other chromatographic technique tested. Each phosphatase and pyrophosphatase activity was characterized with respect to molecular weight, pH optimum, response to inhibitors, Km for bornyl phosphate or bornyl pyrophosphate, and substrate specificity, and each activity was distinctly different with regard to these properties. One pyrophosphatase activity was specific for pyrophosphate esters of sterically hindered monoterpenols such as bornyl pyrophosphate. The other preferred pyrophosphate esters of primary allylic alcohols such as geranyl pyrophosphate and neryl pyrophosphate, which are precursors of cyclic monoterpenes, and it hydrolyzed geranyl pyrophosphate at faster rates than neryl pyrophosphate. The monophosphate hydrolase activities were similar in substrate specificity, showing a preference for phosphate esters of primary allylic alcohols. The terpenyl pyrophosphate hydrolase exhibiting specificity for bornyl pyrophosphate may be involved in camphor biosynthesis in vivo, while the terpenyl pyrophosphate hydrolase more specific for geranyl pyrophosphate was shown to be a source of potential interference in studies on monoterpene cyclization processes.  相似文献   

13.
14.
Soluble enzymes from sage (Salvia officinalis) and tansy (Tanacetum vulgare), which catalyze the cyclization of geranyl pyrophosphate and the presumptive intermediate linalyl pyrophosphate to the (+) and (-) enantiomers, respectively, of 2-bornyl pyrophosphate, were employed to evaluate mechanistic alternatives for the pyrophosphate migration in monoterpene cyclization reactions. Separate incubation of [1-3H2,alpha-32P]- and [1-3H2,beta- 32P]geranyl and (+/-)-linalyl pyrophosphates with partially purified preparations of each enantiomer-generating cyclase gave [3H, 32P]bornyl pyrophosphates, which were selectively hydrolyzed to the corresponding bornyl phosphates. Measurement of 3H:32P ratios of these monophosphate esters established that two ends of the pyrophosphate moiety retained their identifies in the cyclization of both precursors to both products and also indicated that there was no appreciable exchange with exogenous inorganic pyrophosphate in the reaction. Subsequent incubations of each cyclase with [8,9-14C,1-18O]geranyl pyrophosphate and with (1E)-(+/-)-[1-3H,3-18O]linalyl pyrophosphate gave the appropriate (+)- or (-)-bornyl pyrophosphates, which were hydrolyzed in situ to the corresponding borneols. Analysis of the derived benzoates by mass spectrometry demonstrated each of the product borneols to possess an 18O enrichment essentially identical with that of the respective acyclic precursor. The absence of P alpha-P beta interchange and the complete lack of positional 18O isotope exchange of the pyrophosphate moiety are compatible with tight ion pairing of intermediates in the coupled isomerization-cyclization of geranyl pyrophosphate and establish a remarkably tight restriction on the motion of the transiently generated pyrophosphate anion with respect to its cationic terpenyl reaction partner.  相似文献   

15.
Soluble enzyme preparations from Salvia officinalis convert the acyclic precursor [1-3H2,G-14C]geranyl pyrophosphate to cyclic monoterpenes of the pinane (α-pinene,β-pinene), isocamphane (camphene), p-menthane (limonene,1,8-cineole), and bornane (bornyl pyrophosphate, determined as borneol) type without loss of tritium, and without significant conversion to other free acyclic intermediates. Similarly, [1-3H2,G-14C]geraniol is converted in intact S. officinalis leaves to the cyclic monoterpene olefins and 1,8-cineole, as well as to isothujone and camphor, without loss of tritium from C(1). These results clearly eliminate transcis isomerization of geranyl pyrophosphate to neryl pyrophosphate via aldehyde intermediates prior to cyclization, and they support a scheme whereby the trans precursor is cyclized directly by way of a bound linaloyl intermediate.  相似文献   

16.
Cyclase I from Salvia officinalis leaf catalyzes the conversion of geranyl pyrophosphate to the stereo-chemically related bicyclic monoterpenes (+)-alpha-pinene and (+)-camphene and to lesser quantities of monocyclic and acyclic olefins, whereas cyclase II from this plant tissue converts the same acyclic precursor to (-)-alpha-pinene, (-)-beta-pinene and (-)-camphene as well as to lesser amounts of monocyclics and acyclics. These antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H]Linalyl pyrophosphate (3H:14C = 5.14) was tested as a substrate with both cyclases to determine the configuration of the cyclizing intermediate. This substrate with cyclase I yielded alpha-pinene and camphene with 3H:14C ratios of 3.1 and 4.2, respectively, indicating preferential, but not exclusive, utilization of the (3R)-enantiomer. With cyclase II, the doubly labeled substrate gave bicyclic olefins with 3H:14C ratios of from 13 to 20, indicating preferential, but not exclusive, utilization of the (3S)-enantiomer in this case. (3R)- and (3S)-[1Z-3H]linalyl pyrophosphate were separately compared to the achiral precursors [1-3H]geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. With cyclase I, geranyl, neryl, and (3R)-linalyl pyrophosphate gave rise exclusively to (+)-alpha-pinene and (+)-camphene, whereas (3S)-linayl pyrophosphate produced, at relatively low rates, the (-)-isomers. With cyclase II, geranyl, neryl, and (3S)-linalyl pyrophosphate yielded exclusively the (-)-isomer series, whereas (3R)-linalyl pyrophosphate afforded the (+)-isomers at low rates. These results are entirely consistent with the predicted stereochemistries and additionally revealed the unusual ability of these enzymes to catalyze antipodal cyclizations when presented with the unnatural linalyl enantiomer.  相似文献   

17.
Enzymes from Salvia officinalis capable of catalyzing the isomerization and subsequent cyclization of geranyl pyrophosphate to the monoterpenes (+)-alpha-pinene and (+)-bornyl pyrophosphate were examined with the noncyclizable substrate analog 6,7-dihydrogeranyl pyrophosphate in an attempt to dissect the cryptic isomerization step from the normally coupled reaction sequence. The analog inhibited the cyclization of geranyl pyrophosphate and was itself catalytically active, affording acyclic terpene olefins and alcohols as products. The enzymatic products generated from 6,7-dihydrogeranyl pyrophosphate qualitatively resembled the solvolysis products of 6,7-dihydrolinalyl pyrophosphate, yet they constituted a far higher proportion of olefins, suggesting that enzymatic product formation occurs in an environment relatively inaccessible to water. Since the normal cyclization of geranyl pyrophosphate is considered to proceed via preliminary isomerization to the bound tertiary intermediate (3R)-linalyl pyrophosphate, the results suggest that the analog undergoes the normal pyrophosphate ionization-migration step, giving rise in this case to (3R)-6,7-dihydrolinalyl pyrophosphate which is reionized, and because the subsequent cyclizations are precluded, the resulting cation is either deprotonated or captured by water. In divalent metal ion requirement, pH optimum, and other characteristics, the enzymatic transformation of the analog resembles the normal monoterpene cyclase reaction.  相似文献   

18.
19.
Croteau R 《Plant physiology》1992,98(4):1515-1517
Clomazone, an herbicide that reduces the levels of leaf carotenoids and chlorophylls, is thought to act by inhibiting isopentenyl pyrophosphate isomerase or the prenyltransferases responsible for the synthesis of geranylgeranyl pyrophosphate. Cell-free extracts prepared from the oil glands of common sage (Salvia officinalis) are capable of converting isopentenyl pyrophosphate to geranylgeranyl pyrophosphate. Clomazone at 250 micromolar (a level that produced leaf bleaching) had no detectable effect on the activity of the relevant enzymes (isopentenyl pyrophosphate isomerase and the three prenyltransferases, geranyl, farnesyl, and geranylgeranyl pyrophosphate synthases). Thus, inhibition of geranylgeranyl pyrophosphate biosynthesis does not appear to be the mode of action of this herbicide.  相似文献   

20.
Isoprenoids, most of them synthesized by prenyltransferases (PTSs), are a class of important biologically active compounds with diverse functions. The mint geranyl pyrophosphate synthase (GPPS) is a heterotetramer composed of two LSU·SSU (large/small subunit) dimers. In addition to C10-GPP, the enzyme also produces geranylgeranyl pyrophosphate (C20-GGPP) in vitro, probably because of the conserved active-site structures between the LSU of mint GPPS and the homodimeric GGPP synthase from mustard. By contrast, the SSU lacks the conserved aspartate-rich motifs for catalysis. A major active-site cavity loop in the LSU and other trans-type PTSs is replaced by the regulatory R-loop in the SSU. Only C10-GPP, but not C20-GGPP, was produced when intersubunit interactions of the R-loop were disrupted by either deletion or multiple point mutations. The structure of the deletion mutant, determined in two different crystal forms, shows an intact (LSU·SSU)2 heterotetramer, as previously observed in the wild-type enzyme. The active-site of LSU remains largely unaltered, except being slightly more open to the bulk solvent. The R-loop of SSU acts by regulating the product release from LSU, just as does its equivalent loop in a homodimeric PTS, which prevents the early reaction intermediates from escaping the active site of the other subunit. In this way, the product-retaining function of R-loop provides a more stringent control for chain-length determination, complementary to the well-established molecular ruler mechanism. We conclude that the R-loop may be used not only to conserve the GPPS activity but also to produce portions of C20-GGPP in mint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号