首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thomas Wagner  Johannes Rafael 《BBA》1975,408(3):284-296

1. 1. Functional properties of the ATPase complex are investigated in megamitochondria isolated from livers of weanling mice fed a diet containing 2% chloramphenicol, as an inhibitor of mitochondrial protein synthesis.

2. 2. Whereas the specific activity of ATPase remains unchanged in chloramphenicol-induced megamitochondria, about 40% of the enzyme activity is resistant to inhibition by oligomycin, triethyltin or venturicidin. It is concluded that the ATPase complex lacks one or more components whose synthesis or accumulation is dependent on mitochondrial translation. The inhibitor-resistant ATPase portion appears tightly bound to the mitochondrial membrane.

3. 3. Respiratory chain phosphorylation is tightly coupled in isolated megamitochondria. ATP synthesis and ATP-Pi exchange are diminished by 40%, as compared to control mitochondria, but both processes are sensitive to oligomycin, triethyltin or venturicidin.

4. 4. The decrease in ATP synthesis and ATP-Pi exchange in megamitochondria correlates quite well with the emergence of inhibitor-resistant ATPase.

5. 5. The following electron transport activities in the megamitochondria are reduced: NADH-cytochrome c reductase, by 60%, cytochrome oxidase, by 80%; the amount of antimycin required to gain complete inhibition of the bc1-segment is diminished by more than 50%. On the other hand succinate dehydrogenase activity is increased by 50%.

6. 6. Chloramphenicol-induced megamitochondria appear to be a useful system for studying the role of mitochondrial translation in the assembly of mammalian mitochondria.

Abbreviations: FCCP, carbonyl cyanide p-trifluoro methoxyphenylhydrazone; duroquinone, 2, 3, 5, 6-tetramethyl-1,4-benzoquinone; HEPES, N-2-hydroxyethylpiperazine-N1-2-ethanesulphonic acid  相似文献   


2.
Ligand-binding studies with labelled triethyltin on yeast mitochondrial membranes showed the presence of high-affinity sites (KD = 0.6 micronM; 1.2 +/- 0.3 nmol/mg of protein) and low-affinity sites (KD less than 45 micronM; 70 +/- 20 nmol/mg of protein). The dissociation constant of the high-affinity site is in good agreement with the concentration of triethyltin required for inhibition of mitochondrial ATPase (adenosine triphosphatase) and oxidative phosphorylation. The high-affinity site is not competed for by oligomycin or venturicidin, indicating that triethyltin reacts at a different site from these inhibitors of oxidative phosphorylation. Fractionation of the mitochondrial membrane shows a specific association of the high-affinity sites with the ATP synthase complex. During purification of ATP synthase (oligomycin-sensitive ATPase) there is a 5-6-fold purification of oligomycin- and triethyltin-sensitive ATPase activity concomitant with a 7-9-fold increase in high-affinity triethyltin-binding sites. The purified yeast oligomycin-sensitive ATPase complex contains approximately six binding sites for triethyltin/mol of enzyme complex. It is concluded that specific triethyltin-binding sites are components of the ATP synthase complex, which accounts for the specific inhibition of ATPase and oxidative phosphorylation by triethyltin.  相似文献   

3.
Mitochondrial ATP-Pi exchange complex   总被引:4,自引:0,他引:4  
An enzyme complex with high ATP-Pi exchange activity has been purified from beef heart mitochondria, using the general procedure which also yields electron transfer complexes I, II, III and IV from the same batch of mitochondria. The ATP-Pi exchange activity of the preparation, designated complex V, is inhibited by various uncouplers, rutamycin, venturicidin, dicyclohexylcarbodiimide, arsenate, azide, adenylyl imidodiphosphate, and valinomycin plus potassium. The ATP-Pi exchange activity of complex V is specific with respect to ATP; ITP, GTP and UTP are essentially ineffective. Complex V is deficient in cytochromes, but 2–3 times enriched as compared to mitochondria with respect to binding sites for the uncoupler 2-azido-4-nitrophenol. As in mitochondria, this binding is competitively inhibited by other uncouplers. Complexes I, III and IV, which in mitochondria contain the three energy coupling sites, do not bind the above uncoupler.  相似文献   

4.
Homogenates of Tritrichomonas foetus exhibited a Mg2+-dependent adenosine triphosphatase (ATPase) activity, with a pH optimum in Tris buffers of 8.2 to 8.3. The activity was not sensitive to oxygen. At high concentrations, quercetin and 4-chloro-7-nitrobenzofurazan inhibited ATPase activity in the cytoplasmic extract by 20 and 70%, respectively, whereas oligomycin, venturicidin, triethyltin, leucinostatin, dibutylchloromethyltin chloride, spegazzinine, efrapeptin, citreoviridin and sodium azide had no effect and N,N'-dicyclohexylcarbodi-imide stimulated the activity somewhat. The activity was localized in a population of small cytoplasmic particles which also contained an acid phosphatase. There was no indication of an association of ATPase with hydrogenosomes. The ATPase activity (or activities) in this aerotolerant anaerobe is different from the ATPases characteristic of mitochondria or of anaerobic bacteria.  相似文献   

5.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

6.
1. The specific activity of mitochondrial ATPase (adenosine triphosphatase) in extracts of Schizosaccharomyces pombe decreased 2.5-fold as the glucose concentration in the growth medium decreased from 50mM to 15mM. 2. During the late exponential phase of growth, ATPase activity doubled. 3. Sensitivity to oligomycin and Dio-9 as measured by values for I50(mug of inhibitor/mg of protein giving 50% inhibition) at pH 6.8 increased sixfold and ninefold respectively during the initial decrease in ATPase activity, and this degree of sensitivity was maintained for the remainder of the growth cycle. 4. Increased sensitivity to NN'-dicyclohexylcarbodi-imide, triethyltin and venturicidin was also observed during the early stage of glucose de-repression. 5. Smaller increases in sensitivity to efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diaz-le, quercetin and spegazzinine also occurred. 6. The ATPase of glycerol-grown cells was less sensitive to inhibitors than that of glucose-repressed cells; change in values for I50 were not so marked during the growth cycle of cells growing with glycerol. 7. When submitochondrial particles from glycerol-grown cells were tested by passage through Sephadex G-50, a fourfold increase in activity was accompanied by increased inhibitor resistance. 8. Gel filtration of submitochondrial particles from glucose-de-repressed cells gave similar results, whereas loss of ATPase occurred in submitochondrial particles from glucose-repressed cells. 9. It is proposed that alterations in sensitivity to inhibitors at different stages of glucose derepression may be partly controlled by a naturally occuring inhibitor of ATPase. 10. The inhibitors tested may be classififed into two groups on the basis of alterations of sensitivity of the ATPase during physiological modification: (a) oligomycin, Dio-9, NN'-dicyclohexylcarbodi-imide, venturicidin and triethyltin, and (b) efrapeptin, aurovertin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, quercetin and spegazzinine.  相似文献   

7.
Summary The mitochondrial ATPase from oligomycin-resistant mutants which map on different regions of an extrachromosomal DNA (01 and 011 class mutants) showed an increased resistance to oligomycin and venturicidin when assayed in vitro as compared to the sensitive strains.The resistance to oligomycin of the isolated mitochondrial ATPase from 01 class mutants was higher than that of the 011 class mutants.Cross resistance of the oligomycin-resistant mutants to the antibiotics peliomycin and ossamycin, which also inhibit phosphoryl transfer reactions in mitochondria (Walter et al., 1967), was observed, 01 mutants being more resistant to ossamycin than 011 class mutants. At the concentrations of peliomycin studied, no difference in sensitivity among both groups of oligomycin-resistant mutants could be detected.Mitochondrial respiration and isolated mitochondrial ATPase activity are sensitive to venturicidin, suggesting that the previously observed (Brunner et al., 1977) in vivo venturicidin resistance of K. lactis is probably due to an impairment of the influx of the drug at the level of the plasma membrane.  相似文献   

8.
Summary The isolation and characterisation of a mutant affecting the assembly of mitochondrial ATPase is reported. The mutation confers resistance to oligomycin and venturicidin and sensitivity of growth on nonfermentable substrates to low temperature (19°). Genetic analysis indicates that the phenotype is due to a single mutation located on the mitochondrial DNA which is probably allelic with the independently isolated oligomycin resistance mutation [oli1-r].Growth of the mutant at the non-restrictive temperature (28°) yields mitochondria in which the ATPase appears more sensitive to oligomycin than that of the sensitive parental strain. However, when the enzyme is isolated free from the influence of the membrane strong resistance to oligomycin is evident. These data suggest that the component responsible for the oligomycin resistance of the ATPase is part of or subject to interaction with the mitochondrial inner membrane.Measurements of the ATPase content of mitochondria indicate that ATPase production is impaired during growth at 19° C. In addition, studies of the maximum inhibition of mitochondrial ATPase activity by high concentrations of oligomycin suggest a selective lesion in ATPase assembly at low temperature. The nett result is that during growth at 19° only about 10% of the normal level of ATPase is produced of which less than half is membrane integrated and thus capable of oxidative energy production.We propose that the mutation affects a mitochondrially synthesised membrane sector peptide of the ATPase which defines the interaction of F1 ATPase with specific environments on the mitochondrial inner membrane.  相似文献   

9.
Summary Rhodamine 6G was found to be a specific inhibitor of aerobic growth of yeast, having no effect on fermentative growth. A single step spontaneous mutant of S. cerevisiae resistant to rhodamine 6G was isolated, which showed cross-resistance to the ATPase inhibitors venturicidin and triethyltin, to the uncoupler 1799, to bongkrekic acid and to cycloheximide, but not to oligomycin or to the inhibitors of mitochondrial protein synthesis, chloramphenicol and erythromycin. The genetic analysis of this mutant showed that both nuclear and cytoplasmic (but apparently not mitochondrial) factors may be involved in the determination of the mutation. The behaviour is discussed as a possible function for 2 micron circular (omicron) DNA.  相似文献   

10.
J W Soper  P L Pedersen 《Biochemistry》1976,15(12):2682-2690
The hydrolytic activity of the ATPase bound to purified inner membrane vesicles of rat liver mitochondria can be increased threefold by washing extensively with a high ionic strength phosphate buffer. The specific ATPase activities of such phosphate-washed membranes are the highest reported to date for a mitochondrial membrane preparation (21-24 mumol of ATP hydrolyzed min-1 mg-1 in bicarbonate buffer at 37 degrees C). Deoxycholate (0.1 mg/mg of protein) extracts from these membranes a soluble, cold-stable ATPase complex which exhibits a specific activity under optimal assay conditions of 12 mumol of ATP hydrolyzed min-1 mg-1. This complex is not sedimented by centrifugation at 201000 g for 90 min, and readily passes through a 250-A Millipore filter. The ATPase activity of the soluble complex is inhibited 95% by 2.4 muM oligomycin. In addition, inhibitions of 60% or better are obtained in the presence of 1-8 muM dicyclohexylcarbodiimide, p-chloromercuribenzoate, venturicidin, and aurovertin. While a similar complex may be extracted with Triton X-100 this preparation is always lower in both specific activity and in inhibitor sensitivities than the complex extracted with deoxycholate. Detergents of the Tween and Brij series and other detergents of the Triton series are also much less effective than deoxycholate in solubilizing the oligomycin-sensitive. ATPase complex of rat liver. It is concluded that deoxycholate is superior to other detergents as an extractant of the oligomycin-sensitive ATPase complex of rat liver mitochondria, and that the complex extracted with deoxycholate possesses a closer similarity to the membrane-associated ATPase than does the complex extracted with Triton X-100. These studies document the first report of a detergent-solubilized, oligomycin-sensitive ATPase preparation from rat liver mitochondria.  相似文献   

11.
ATPase inhibitor protein, which blocks mitochondrial ATPase activity by forming an enzyme-inhibitor complex, was found to be synthesized as a larger precursor in a cell-free translation system directed by yeast mRNA. Other protein factors, which stabilize latent ATPase by binding to the enzyme-inhibitor complex, were also found to be formed as larger precursors. The precursor of ATPase inhibitor protein was transported into isolated yeast mitochondria and was cleaved to the mature peptide in the mitochondria. Impaired mitochondria lacking phosphorylation activity could not convert the precursor to the mature form. Neither antimycin A nor oligomycin alone exhibited a marked effect on the transport-processing of the precursor by intact mitochondria. However, when antimycin A was added with oligomycin, the transport-processing was markedly inhibited. The processing was also strongly inhibited by an uncoupler, carbonylcyanide p-trifluoro-methoxyphenyl hydrazone. The inhibition by the uncoupler was not relieved by ATP added externally. It is concluded that the transport-processing of precursor proteins requires intact mitochondria with a potential difference across the inner membrane.  相似文献   

12.
ATPase/ATP synthase preparations originally contain protein bands in the 28-31-kDa region. The present study demonstrates separation of the band at 29 kDa (adenine nucleotide translocator) from a band at approximately 31 kDa. In cholate/ammonium sulfate-extracted ATP synthases removal of the 31-kDa band results in decrease of ATP-Pi exchange and oligomycin sensitivity of the ATPase activity. It is suggested that the protein band at 31 kDa is heterogeneous, containing diverse activities, the identities of which are yet to be determined.  相似文献   

13.
The insensitivity to uncouplers of testis mitochondrial ATPase   总被引:1,自引:0,他引:1  
Albumin-free testis mitochondrial ATPase activity failed to be stimulated by either 2,4-dinitrophenol (DNP) or carbonyl cyanide rho-trifluoromethoxyphenylhydrazone (FCCP). DNP scarcely enhanced the state 4 respiration and mitochondria proved to be poorly coupled. When 1% bovine serum albumin was added to the isolation medium, DNP or FCCP stimulated ATPase nearly twofold and the dose-response curves for the uncouplers on the QO2 reached a plateau at five- to sixfold. The DNP coupling index (q) also showed a 30-40% improvement. A dose-response curve for oligomycin on the rate of [gamma-32P]ATP synthesis showed a stimulation of ATP synthase activity by 10-100 ng inhibitor/mg protein, suggesting a possible blockade of "open" F0 channels. In the albumin preparation oligomycin inhibited ATP synthesis in the range 10-100 ng/mg protein. Since testis ATPase is known to be loosely bound to the membrane, an effect of albumin, improving tightness in the interaction of the F1 and the F0 sectors of the ATPase, is suggested.  相似文献   

14.
After illumination in the presence of dithiothreitol, chloroplast thylakoids catalyze ATP hydrolysis and an exchange between ATP and Pi in the dark. ATP hydrolysis is linked to inward proton translocation. The relationships between ATP hydrolysis, ATP-Pi exchange, and proton translocation during the steady state were examined. The internal proton concentration was found to be proportional to the rate of ATP hydrolysis when these parameters were varied by procedures that do not alter the proton permeability of the thylakoid membranes. A linear relationship between the internal proton concentration and the rate of nonphosphorylating electron flow was previously verified. By determining the constant relating internal proton concentration to both ATP hydrolysis and electron flow, the proton/ATP ratio for the chloroplast ATPase complex was calculated to be 3.4 +/- 0.3. The presence of Pi, which allows ATP-Pi exchange to occur, lowers the internal proton concentration, but does not alter the relationship between the net rate of ATP hydrolysis and internal proton concentration. ATP-Pi exchange shows a dependence on the proton activity gradient very similar to that of ATP synthesis in the light. These results suggest that ATP-Pi exchange resembles photophosphorylation. In agreement with this idea, it is nucleoside diphosphate from the medium that is phosphorylated during exchange. Moreover, the energy-linked incorporation of Pi and ADP into ATP during exchange occurs at a similar rate. Thus, ATP synthesis from medium ADP and Pi takes place at the expense of the pH gradient generated by ATP hydrolysis.  相似文献   

15.
Liver mitochondria from rats fed ethanol chronically demonstrated a 35% decrease in mitochondrial ATPase activity. Moreover, the ATPase activity was inhibited only 61% by addition of oligomycin. Treatment of mitochondria from ethanol-fed rats with the detergent, Lubrol-WX, caused the release of 36% of the F1 from the resulting inner membrane particles. In comparison, only 5% of the F1 was dissociated when control mitochondria were subjected to the Lubrol treatment. However, when the units of ATPase activity from the supernatant and particles obtained after Lubrol treatment were added together, their sums were equivalent in preparations from control and ethanol-fed animals. Moreover, polyacrylamide gel electrophoresis analyses indicated equal amounts of the alpha + beta subunits of F1 in mitochondria from control and ethanol-fed rats. Reconstitution experiments with urea particles and F1 prepared from both control and ethanol mitochondria revealed a decrease in oligomycin sensitivity which could be attributed to an alteration in the functioning of either the oligomycin sensitivity conferring protein or a membrane sector subunit that interacts with oligomycin. Analysis by reconstitution also demonstrated that there were no ethanol-elicited alterations in the properties of the F1 portion of the ATP synthase complex. These observations indicate that the activity of the ATP synthase complex is altered significantly by ethanol-elicited changes in the functioning of those polypeptides involved in modulating both oligomycin sensitivity and the association of F1 with membrane sector subunits.  相似文献   

16.
1. An ATPase complex containing 12 subunits was isoalted from rat liver mitochondria. 2. In vivo inhibition of mitochondrial protein synthesis by the chloramphenicol analogue thiamphenicol leads to the formation of an oligomycin-insensitive membrane-bound ATPase complex in mitochondria of regenerating rat liver. 3. This oligomycin-insensitive, membrane-bound ATPase was isolated by the same procedure as the ATPase complex from regenerating livers of untreated animals. 4. SDS-polyacrylamide gel electrophoresis of in vivo labelled ATPase complexes from control and from thiamphenicol-treated rats reveals that three subunits out of the 12 are not synthesized or assembled when the mitochondrial translation activity is blocked. 5. From the subunits synthesized and assembled when mitochondrial pror (Fo) of the ATPase complex (subunit 5). 6. The oligomycin sensitivity-conferring protein seems absent in the ATPase complex formed in the presence of thiamphenicol.  相似文献   

17.
We have compared the adenosine triphosphatase (ATPase) activity of mitochondria prepared from wild-type Neurospora crassa and from poky, a maternally inherited mutant known to possess defective mitochondrial ribosomes and reduced amounts of cytochromes aa3 and b. poky contains two distinct forms of mitochondrial ATPase. The first is normal in its Km for ATP, specificity for nucleotides and divalent cations, pH optimum, cold stability, and sensitivity to inhibitors (oligomycin, N,N-dicyclohexyl carbodiimide, and adenylyl imidodiphosphate). The fact that membrane-bound, cold-stable, oligomycin-sensitive ATPase activity is present in poky (with an activity of 1.93 +/- 0.03 mumol/min-mg of protein compared with 1.33 +/- 0.07 mumol/min-mg of protein in the wild-type strain) and also in chloramphenicol-grown wild-type cells suggests that products of mitochondrial protein synthesis play only a limited role in the attachment of the mitochondrial ATPase to the membrane in Neurospora. poky also contains a second form of mitochondrial ATPase, which has an activity of 1.5 +/- 0.2 mumol/min-mg of protein, is oligomycin sensitive but cold labile, and presumably is attached less firmly to the mitochondrial membrane. The two forms, added together, represent a substantial overproduction of mitochondrial ATPase by poky.  相似文献   

18.
L.De Jong  M. Holtrop  A.M. Kroon 《BBA》1978,501(3):405-414
Treatment of rats with thiamphenicol in a dose of 125 mg/kg per day for 60–64 h causes specific inhibition of mitochondrial protein synthesis, leading to a drastic decrease of the cytochrome c oxidase activity in intestinal epithelium. At the same time the mitochondrial ATPase activity becomes resistant to inhibition by oligomycin. Experiments with isolated intestinal mitochondria revealed that respiration in state 3 is diminished by 55% with succinate (5 mM) and by 40% with pyruvate (10 mM) plus L-malate (2 mM) as the substrates, both as compared to intestinal mitochondria isolated from control rats. P : O ratios as well as respiratory control indices are comparable in the two groups of animals. Uncoupled respiration is inhibited by 35% with succinate as the substrate, while the succinate cytochrome c reductase activity remains unaltered. No inhibition of uncoupled respiration with pyruvate plus L-malate as the substrates was observed. The ATP-Pi exchange activity in the mitochondria from the treated animals is diminished by about 75%. It is concluded that in the mitochondria of the treated animals the inhibition of the coupled respiration (state 3) is caused by the limitation of the ATP-generating capacity and that electron transport is rate limiting only with the rapidly oxidized substrates such as succinate, if respiration is uncoupled.  相似文献   

19.
1. The coupling ATPase of Paracoccus denitrificans can be removed from the membrane by washing coupled membrane fragments at low salt concentrations. 2. This ATPase resembles coupling ATPases of mitochondria, chloroplasts and other bacteria. It is a negatively charged protein of molecular weight about 300,000. An inhibitor protein in bound tightly to the ATPase in vivo, and can be destroyed by trypsin treatment. 3. ATP and ADP are found tightly bound to the coupling ATPase of P. denitrificans, both in its membrane-bound and isolated state. The ATP/ADP ratio on the enzyme is greater than one. 4. Under de-energised condtions, the bound nucleotides are not available to the suspending medium. When the membrane is energised however, the bound nucleotides can exchange with added nucleotides and incorporate 32Pi. 32Ppi is incorporated into the beta and gamma positions of the bound nucleotides, but beta-labelling probably does not occur on the coupling ATPase. 5. Uncouplers inhibit the exchange of the free nucleotides or 32Pi into the bound nucleotides, while venturicidin (an energy transfer inhibitor) and aurovertin stimulate the exchange. 6. The response of the bound nucleotides to energisation is consistent with their being involved directly in the mechanism of oxidative phosphorylation.  相似文献   

20.
Y M Galante  S Y Wong  Y Hatefi 《Biochemistry》1981,20(9):2671-2678
Mitochondrial ATPase inhibitor protein (IF1) reacts reversibly with complex V and inhibits up to 90% of its ATPase activity. Both the rate and extent of inhibition are pH and temperature dependent and increase as the pH is lowered from pH 8 tp 6.7 (the lowest pH examined) or as the temperature is increased from 4 to 36 degrees C. Nucleotide triphosphates plus Mg2+ ions are required for inhibition of complex V ATPase activity by IF1. In the presence of Mg2+ ions, the effectiveness order of nucleotides is ATP greater than ITP greater than GTP greater than UTP. Highly purified complex V, which requires added phospholipids for expressing ATPase and ATP-Pi exchange activities, cannot be inhibited by IF1 plust ATP-Mg2+ unless phospholipids are also added. This indicates that the active state of the enzyme is necessary for the IF1 effect to be manifested, because F1-ATPase, which does not contain nor require phospholipids for catalyzing ATP hydrolysis, can be inhibited by IF1 plus ATP-Mg2+ in the absence of added phospholipids. The IF1-inhibited complex V, but not IF1-inhibited F1-ATPase, can be reactivated by incubation at pH greater than 7.0 in the absence of ATP-Mg2+. The reactivation rate is pH dependent and is influenced by temperature and enzyme concentration. Complex V preparations contain small and variable amounts of IF1. This endogenous IF1 behaves the same as added IF1 with respect to conditions described above for inhibition and reactivation and can result in 25-50% inhibition in different complex V preparations. However, complex V lacking endogenous IF1 can be reconstituted from F0, F1, oligomycin sensitivity conferring protein, and phospholipids. Inhibition of this reconstituted preparation in the presence of ATP-Mg2+ depends entirely on addition of IF1. In general, the ATP-Pi exchange activity of complex V is more sensitive to the chemical inhibitors of F1-AtPase tha its ATPase activity. This is not so, however, for IF1. Under conditions that IF1 caused approximately 75% inhibition of ATPase activity of complex V, no more than 10% of the ATP-Pi exchange activity was inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号