首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 739 毫秒
1.
The structure of a 468 kDa peptidase complex from the hyperthermophile Pyrococcus horikoshii has been solved at 1.9 Å resolution. The monomer contains the M42 peptidase typical catalytic domain, and a dimerization domain that allows the formation of dimers that assemble as a 12-subunit self-compartmentalized tetrahedron, similar to those described for the TET peptidases. The biochemical analysis shows that the enzyme is cobalt-activated and cleaves peptides by a non-processive mechanism. Consequently, this protein represents the third TET peptidase complex described in P. horikoshii , thereby called PhTET3. It is a lysyl aminopeptidase with a strong preference for basic residues, which are poorly cleaved by PhTET1 and PhTET2. The structural analysis of PhTET3 and its comparison with PhTET1 and PhTET2 unravels common features explaining the general mode of action of the TET molecular machines as well as differences that can be associated with strong substrate discriminations. The question of the stability of the TET assemblies under extreme temperatures has been addressed. PhTET3 displays its maximal activity at 95°C and small-angle neutron scattering experiments at 90°C demonstrate the absence of quaternary structure alterations after extensive incubation times. In conclusion, PhTETs are complementary peptide destruction machines that may play an important role in the metabolism of P. horikoshii .  相似文献   

2.
Tetrahedral (TET) aminopeptidases are large polypeptide destruction machines present in prokaryotes and eukaryotes. Here, the rules governing their assembly into hollow 12-subunit tetrahedrons are addressed by using TET2 from Pyrococcus horikoshii (PhTET2) as a model. Point mutations allowed the capture of a stable, catalytically active precursor. Small angle x-ray scattering revealed that it is a dimer whose architecture in solution is identical to that determined by x-ray crystallography within the fully assembled TET particle. Small angle x-ray scattering also showed that the reconstituted PhTET2 dodecameric particle displayed the same quaternary structure and thermal stability as the wild-type complex. The PhTET2 assembly intermediates were characterized by analytical ultracentrifugation, native gel electrophoresis, and electron microscopy. They revealed that PhTET2 assembling is a highly ordered process in which hexamers represent the main intermediate. Peptide degradation assays demonstrated that oligomerization triggers the activity of the TET enzyme toward large polypeptidic substrates. Fractionation experiments in Pyrococcus and Halobacterium cells revealed that, in vivo, the dimeric precursor co-exists together with assembled TET complexes. Taken together, our observations explain the biological significance of TET oligomerization and suggest the existence of a functional regulation of the dimer-dodecamer equilibrium in vivo.  相似文献   

3.
TET aminopeptidases assemble as large homo‐dodecameric complexes. The reason why prokaryotic genomes often encode a diverse set of TET peptidases homologues remains unclear. In the archaeon Pyrococcus horikoshii, PhTET1, PhTET2 and PhTET3 homo‐oligomeric particles have been proposed to work in concert to breakdown intracellular polypeptides. When coexpressed in Escherichia coli, the PhTET2 and PhTET3 proteins were found to assemble efficiently as heteromeric complexes. Biophysical analysis demonstrated that these particles possess the same quaternary structure as the homomeric TET dodecamers. The same hetero‐oligomeric complexes were immunodetected in P. horikoshii cell extracts analysed by sucrose gradient fractionation and ion exchange chromatography. The biochemical activity of a purified hetero‐oligomeric TET particle, assessed on chromogenic substrates and on a complex mixture of peptides, reveals that it displays higher efficiency than an equivalent combination of homo‐oligomeric TET particles. Interestingly, phylogenetic analysis shows that PhTET2 and PhTET3 are paralogous proteins that arose from gene duplication in the ancestor of Thermococcales. Together, these results establish that the PhTET2 and PhTET3 proteins are two subunits of the same enzymatic complex aimed at the destruction of polypeptidic chains of very different composition. This is the first report for such a mechanism intended to improve multi‐enzymatic complex efficiency among exopeptidases.  相似文献   

4.
Pyrococcus horikoshii open reading frame PH1527 encodes a 39014 Da protein that shares about 30% identity with endoglucanases and members of the M42 peptidase family. Analytical ultracentrifugation and electron microscopy studies showed that the purified recombinant protein forms stable, large dodecameric complexes with a tetrahedral shape similar to the one described for DAP, a deblocking aminopeptidase that was characterized in the same organism. The two related proteins were named PhTET1 (for DAP) and PhTET2 (for PH1527). The substrate specificity and the mode of action of the PhTET2 complex were studied in detail and compared to those of PhTET1 and other assigned M42 peptidases. When assayed with short chromogenic peptides, PhTET2 was found to be an aminopeptidase, with a clear preference for leucine as the N-terminal amino acid. However, the enzyme can cleave moderately long polypeptide substrates of various compositions in a fairly unspecific manner. The hydrolytic mechanism was found to be nonprocessive. The enzyme has neither carboxypeptidase nor endoproteolytic activities, and it is devoid of N-terminal deblocking activity. PhTET2 was inhibited in the presence of EDTA and bestatin, and cobalt was found to be an activating metal. The PhTET2 protein is a highly thermostable enzyme that displays optimal activity around 100 degrees C over a broad pH array.  相似文献   

5.
The TET proteases from Pyrococcus horikoshii are metallopeptidases that form large dodecameric particles with high thermal stability. The influence of various physico-chemical parameters on PhTET3 quaternary structure was investigated. Analytical ultracentrifugation and biochemical analyses showed that the PhTET3 quaternary structure and enzymatic activity are maintained in high salt and that the complex is stable under extreme acidic conditions. Under basic pH conditions the complex disassembled into a low molecular weight species that was identified as folded dimer. Metal analyses showed that the purified enzyme only contains two equivalent of zinc per monomer, corresponding to the metal ions responsible for catalytic activity. When these metals were removed by EDTA treatment, the complex dissociated into the same dimeric species as those observed at high pH. Dodecameric TET particles were obtained from the metal free dimers when 2mM of divalent ions were added to the protein samples. Most of the dimers remained assembled at high temperature. Thus, we have shown that dimers are the building units in the TET oligomerization pathway and that the active site metals are essential in this process.  相似文献   

6.
The bacterial heat shock locus HslU ATPase and HslV peptidase together form an ATP-dependent HslVU protease. Crystal structures show that HslU forms a hexamer with a pore at one end and HslV forms a dodecamer with translocation pores at both ends of two back-to-back stacked hexameric rings. Consistent with three electron microscopic studies and one small-angle X-ray scattering study, three crystal structures show that the nucleotide-binding domains of HslU bind to HslV and that the pores of the peptidase and ATPase are next to each other and aligned. A fourth crystal structure shows a radically different quaternary arrangement. Here I present a crystallographic analysis of the fourth structure to show that it contained a crystallographic origin shift and a mistake in space group assignment. Once these errors are corrected, a quaternary arrangement that is similar to those observed in the other structures emerges.  相似文献   

7.
Tryptophan synthase (TrpS) is a heterotetrameric αββα enzyme that exhibits complex substrate channeling and allosteric mechanisms and is a model system in enzymology. In this work, we characterize proposed early and late evolutionary states of TrpS and show that they have distinct quaternary structures caused by insertions–deletions of sequence segments (indels) in the β-subunit. Remarkably, indole hydrophobic channels that connect α and β active sites have re-emerged in both TrpS types, yet they follow different paths through the β-subunit fold. Also, both TrpS geometries activate the α-subunit through the rearrangement of loops flanking the active site. Our results link evolutionary sequence changes in the enzyme subunits with channeling and allostery in the TrpS enzymes. The findings demonstrate that indels allow protein quaternary architectures to escape “minima” in the evolutionary landscape, thereby overcoming the conservational constraints imposed by existing functional interfaces and being free to morph into new mechanistic enzymes.  相似文献   

8.
X-ray structures of ferritins and related proteins   总被引:1,自引:0,他引:1  
Ferritins are members of a much larger superfamily of proteins, which are characterised by a structural motif consisting of a bundle of four parallel and anti-parallel α helices. The ferritin superfamily itself is widely distributed across all three living kingdoms, in both aerobic and anaerobic organisms, and a considerable number of X-ray structures are available, some at extremely high resolution. We describe first of all the subunit structure of mammalian H and L chain ferritins and then discuss intersubunit interactions in the 24-subunit quaternary structure of these ferritins. Bacteria contain two types of ferritins, FTNs, which like mammalian ferritins do not contain haem, and the haem-containing BFRs. The characteristic carboxylate-bridged di-iron ferroxidase sites of H chain ferritins, FTNs and BFRs are compared, as are the potential entry sites for iron and the ‘nucleation’ site of L chain ferritins. Finally we discuss the three-dimensional structures of the 12-subunit bacterial Dps (DNA-binding protein from starved cells) proteins as well as their intersubunit di-iron ferroxidase site.  相似文献   

9.
Carbonmonoxy hemoglobin Ypsilanti (beta 99 Asp-Tyr) exhibits a quaternary form distinctly different from any structures previously observed for human hemoglobins. The relative orientation of alpha beta dimers in the new quaternary form lies well outside the range of values observed for normal unliganded and liganded tetramers (Baldwin, J., Chothia, C., J. Mol. Biol. 129:175-220, 1979). Despite this large quaternary structural difference between carbonmonoxy hemoglobin Ypsilanti and the two canonical structures, the new quaternary structure's hydrogen bonding interactions in the "switch" region, and packing interactions in the "flexible joint" region, show noncovalent interactions characteristic of the alpha 1 beta 2 contacts of both unliganded and liganded normal hemoglobins. In contrast to both canonical structures, the beta 97 histidine residue in carbonmonoxy hemoglobin Ypsilanti is disengaged from quaternary packing interactions that are generally believed to enforce two-state behavior in ligand binding. These features of the new quaternary structure, denoted Y, may therefore be representative of quaternary states that occur transiently along pathways between the normal unliganded, T, and liganded, R, hemoglobin structures.  相似文献   

10.
In Saccharomyces cerevisiae, a constitutive biosynthetic transport pathway, termed the cytoplasm-to-vacuole targeting (Cvt) pathway, sequesters precursor aminopeptidase I (prApe1) dodecamers in the form of a large complex into a Cvt vesicle using autophagic machinery, targeting it into the vacuole (the yeast lysosome) where it is proteolytically processed into its mature form, Ape1, by removal of an amino-terminal 45-amino acid propeptide. prApe1 is thought to serve as a scaffolding cargo critical for the assembly of the Cvt vesicle by presenting the propeptide to mediate higher-ordered complex formation and autophagic receptor recognition. Here we report the X-ray crystal structure of Ape1 at 2.5 Å resolution and reveal its dodecameric architecture consisting of dimeric and trimeric units, which associate to form a large tetrahedron. The propeptide of prApe1 exhibits concentration-dependent oligomerization and forms a stable tetramer. Structure-based mutagenesis demonstrates that disruption of the inter-subunit interface prevents dodecameric assembly and vacuolar targeting in vivo despite the presence of the propeptide. Furthermore, by examining the vacuolar import of propeptide-fused exogenous protein assemblies with different quaternary structures, we found that 3-dimensional spatial distribution of propeptides presented by a scaffolding cargo is essential for the assembly of the Cvt vesicle for vacuolar delivery. This study describes a molecular framework for understanding the mechanism of Cvt or autophagosomal biogenesis in selective macroautophagy.  相似文献   

11.
Both the peptidase activity against small fluorescent peptide substrates and the ATPase activity of Lon (La) proteases are stimulated by unstructured proteins such as alpha-casein. This stimulation reveals the simultaneous interaction of Lon with two proteolytic substrates--alpha-casein and the peptide substrate. To understand the cellular function of this stimulation, it is important to determine the physical properties of Lon stimulators. The abilities of compositionally simple random copolymers of amino acids (rcAAs) to stimulate the peptidase and ATPase activities of the Lon protease from Mycobacterium smegmatis (Ms-Lon) and its N-terminal truncation mutant (N-E226) were determined. We report that cationic but not anionic rcAAs stimulated Ms-Lon's peptidase activity but were themselves poor substrates for the enzyme. Peptidase stimulation by rcAAs correlated approximately with the degree of hydrophobicity of these polypeptides and reached levels >10-fold higher than observed previously for Ms-Lon stimulators such as alpha-casein. In contrast to alpha-casein, which stimulates Ms-Lon's peptidase activity by 40% and ATPase activity by 150%, rcAAs stimulated peptidase activity without concomitant stimulation of ATPase activity. Active site labeling experiments suggested that both rcAAs and ATP increased peptidase activity by increasing accessibility to the peptidase active site. Peptidase activity assays in the presence of both alpha-casein and rcAAs revealed that interactions of rcAAs and alpha-casein with Ms-Lon are extremely complex and not mutually exclusive. Specifically, (1) additions of low concentrations of alpha-casein (<50 microg/mL) caused a further stimulation of Ms-Lon's rcAA-stimulated peptidase activity; (2) additions of higher concentrations of alpha-casein inhibited Ms-Lon's rcAA-stimulated peptidase activity; (3) additions of all concentrations of alpha-casein inhibited N-E226's rcAA-stimulated peptidase activity. We conclude the Ms-Lon can interact with an rcAA, alpha-casein, and a substrate peptide simultaneously, and that formation of this quaternary complex requires the N-terminal domain of Ms-Lon. These data support models of Ms-Lon that include two allosteric polypeptide binding sites distinct from the catalytic peptidase site.  相似文献   

12.
Dimeric seminal RNase (BS-RNase) is an equilibrium mixture of conformationally different quaternary structures, one characterized by the interchange between subunits of their N-terminal ends (the MXM form); the other with no interchange (the M=M form). Controlled tryptic digestion of each isolated quaternary form generates, as limit digest products, folded and enzymatically active molecules, very resistant to further tryptic degradation. Electrospray mass spectrometric analyses and N-terminal sequence determinations indicate that trypsin can discriminate between the conformationally different quaternary structures of seminal RNase, and exerts a differential and asymmetric action on the two dimeric forms, depending on the original quaternary conformation of each form. The two digestion products from the MXM and the M=M dimeric forms have different structures, which are reminiscent of the original quaternary conformation of the dimers: one with interchange, the other with no interchange, of the N-terminal ends. The surprising resistance of these tryptic products to further tryptic action is explained by the persistence in each digestion product of the original intersubunit interface.  相似文献   

13.
Electron microscopy of seed-storage globulins   总被引:1,自引:0,他引:1  
The quaternary structures of a range of seed globulins, including examples of both the so-called 7 S and 11 S types, have been examined by electron microscopy. The legume 7 S proteins, phaseolin (bean), beta-conglycinin (soybean), and vicilin (pea), appear as flat discs of diameter ca. 8.5 nm and thickness ca. 3.5 nm formed by association of three subunit domains. Phaseolin converts to an 18 S tetramer at acid pH, and images recorded under these conditions suggest that four of the 7 S protomer discs associate to form the faces of a regular tetrahedron. The classical 11 S seed globulins, cucurbitin (pumpkin) and legumin (pea), are approximately spherical molecules of diameter ca. 8.8 nm composed of six subunits. In contrast, the hexameric 10 S storage protein from lupin seed, conglutin gamma, appears toroidal in shape with outer diameter ca. 10.3 nm and thickness ca. 2.2 nm. These results indicate that constraints imposed on seed proteins by their role in sustaining the germinating plant may have allowed a variety of different globulin structures to accumulate in the protein-storage bodies of seeds.  相似文献   

14.
The generation of cellular energy depends on the coordinated assembly of nuclear and mitochondrial-encoded proteins into multisubunit respiratory chain complexes in the inner membrane of mitochondria. Here, we describe the identification of a conserved metallopeptidase present in the intermembrane space, termed Atp23, which exerts dual activities during the biogenesis of the F(1)F(O)-ATP synthase. On one hand, Atp23 serves as a processing peptidase and mediates the maturation of the mitochondrial-encoded F(O)-subunit Atp6 after its insertion into the inner membrane. On the other hand and independent of its proteolytic activity, Atp23 promotes the association of mature Atp6 with Atp9 oligomers. This assembly step is thus under the control of two substrate-specific chaperones, Atp10 and Atp23, which act on opposite sides of the inner membrane. Strikingly, both ATP10 and ATP23 were found to genetically interact with prohibitins, which build up large, ring-like assemblies with a proposed scaffolding function in the inner membrane. Our results therefore characterize not only a novel processing peptidase with chaperone activity in the mitochondrial intermembrane space but also link the function of prohibitins to the F(1)F(O)-ATP synthase complex.  相似文献   

15.
The E. coli pyruvate and 2-oxoglutarate dehydrogenases are two closely related, large complexes that exemplify a growing number of multiprotein "machines" whose domains have been studied extensively and modeled in atomic detail, but whose quaternary structures have remained unclear for lack of an effective imaging technology. Here, electron cryotomography was used to show that the E1 and E3 subunits of these complexes are flexibly tethered approximately 11 nm away from the E2 core. This result demonstrates unambiguously that electron cryotomography can reveal the relative positions of features as small as 80 kDa in individual complexes, elucidating quaternary structure and conformational flexibility.  相似文献   

16.
The glycoprotein hormones are all structurally related heterodimers consisting of an α-subunit and a ligand-specific β-subunit that confers their unique biological activity. Crystal structures showed how the β-subunit surrounds a part of the α-subunit, and we showed the existence of the two mechanisms responsible for that assembly. In human choriogonadotropin, the β-subunit is folded before the subunits dock, and the α-subunit becomes incorporated into the dimer by a mechanism we termed “threading,” passing between parts of the preassembled β-subunit. Here, we show that the human lutropin β-subunit is not folded completely prior to its interaction with the α-subunit and show that docking of the subunits enables the α-subunit to serve as a chaperone to the β-subunit. Based on data described here, we propose that the α-subunit facilitates formation of the human lutropin β-subunit by two mechanisms. First, the cystine knot of the α-subunit potentiates formation of the β-subunit cystine knot, and second, contacts between α-subunit loop 2 and a hydrophobic tail in the β-subunit facilitate formation of the seatbelt latch disulfide, which stabilizes the heterodimer. The primary influence of the α-subunit was seen when the hydrophobic tail was present or absent, but the secondary mechanism was required only when the hydrophobic tail of the β-subunit was present. During the evolution of human choriogonadotropin, neither of these α-subunit roles was necessary for folding of the β-subunit. The complex mechanism for lutropin assembly may be required to provide an additional control on its positive feedback function in vertebrate reproduction.  相似文献   

17.
A comprehensive analysis of the quaternary features of distantly related homo‐oligomeric proteins is the focus of the current study. This study has been performed at the levels of quaternary state, symmetry, and quaternary structure. Quaternary state and quaternary structure refers to the number of subunits and spatial arrangements of subunits, respectively. Using a large dataset of available 3D structures of biologically relevant assemblies, we show that only 53% of the distantly related homo‐oligomeric proteins have the same quaternary state. Considering these homologous homo‐oligomers with the same quaternary state, conservation of quaternary structures is observed only in 38% of the pairs. In 36% of the pairs of distantly related homo‐oligomers with different quaternary states the larger assembly in a pair shows high structural similarity with the entire quaternary structure of the related protein with lower quaternary state and it is referred as “Russian doll effect.” The differences in quaternary state and structure have been suggested to contribute to the functional diversity. Detailed investigations show that even though the gross functions of many distantly related homo‐oligomers are the same, finer level differences in molecular functions are manifested by differences in quaternary states and structures. Comparison of structures of biological assemblies in distantly and closely related homo‐oligomeric proteins throughout the study differentiates the effects of sequence divergence on the quaternary structures and function. Knowledge inferred from this study can provide insights for improved protein structure classification and function prediction of homo‐oligomers. Proteins 2016; 84:1190–1202. © 2016 Wiley Periodicals, Inc.  相似文献   

18.
Chen HN  Woycechowsky KJ 《Biochemistry》2012,51(23):4704-4712
Protein self-assembly relies upon the formation of stabilizing noncovalent interactions across subunit interfaces. Identifying the determinants of self-assembly is crucial for understanding structure-function relationships in symmetric protein complexes and for engineering responsive nanoscale architectures for applications in medicine and biotechnology. Lumazine synthases (LS's) comprise a protein family that forms diverse quaternary structures, including pentamers and 60-subunit dodecahedral capsids. To improve our understanding of the basis for this difference in assembly, we attempted to convert the capsid-forming LS from Aquifex aeolicus (AaLS) into pentamers through a small number of rationally designed amino acid substitutions. Our mutations targeted side chains at ionic (R40), hydrogen bonding (H41), and hydrophobic (L121 and I125) interaction sites along the interfaces between pentamers. We found that substitutions at two or three of these positions could reliably generate pentameric variants of AaLS. Biophysical characterization indicates that this quaternary structure change is not accompanied by substantial changes in secondary or tertiary structure. Interestingly, previous homology-based studies of the assembly determinants in LS's had identified only one of these four positions. The ability to control assembly state in protein capsids such as AaLS could aid efforts in the development of new systems for drug delivery, biocatalysis, or materials synthesis.  相似文献   

19.
Safo MK  Abraham DJ 《Biochemistry》2005,44(23):8347-8359
The liganded hemoglobin (Hb) high-salt crystallization condition described by Max Perutz has generated three different crystals of human adult carbonmonoxy hemoglobin (COHbA). The first crystal is isomorphous with the "classical" liganded or R Hb structure. The second crystal reveals a new liganded Hb quaternary structure, RR2, that assumes an intermediate conformation between the R form and another liganded Hb quaternary structure, R2, which was discovered more than a decade ago. Like the R2 structure, the diagnostic R state hydrogen bond between beta2His97 and alpha1Thr38 is missing in the RR2 structure. The third crystal adopts a novel liganded Hb conformation, which we have termed R3, and it shows substantial quaternary structural differences from the R, RR2, and R2 structures. The quaternary structure differences between T and R3 are as large as those between T and R2; however, the T --> R3 and T --> R2 transitions are in different directions as defined by rigid-body screw rotation. Moreover, R3 represents an end state. Compared to all known liganded Hb structures, R3 shows remarkably reduced strain at the alpha-heme, reduced steric contact between the beta-heme ligand and the distal residues, smaller alpha- and beta-clefts, and reduced alpha1-alpha2 and beta1-beta2 iron-iron distances. Together, these unique structural features in R3 should make it the most relaxed and/or greatly enhance its affinity for oxygen compared to the other liganded Hbs. The current Hb structure-function relationships that are now based on T --> R, T -->R --> R2, or T --> R2 --> R transitions may have to be reexamined to take into account the RR2 and R3 liganded structures.  相似文献   

20.
In Eukarya and Archaea, translation initiation factor 2 (eIF2/aIF2), which contains three subunits (α, β, and γ), is pivotal for binding of charged initiator tRNA to the small ribosomal subunit. The crystal structure of the full-sized heterotrimeric aIF2 from Sulfolobus solfataricus in the nucleotide-free form has been determined at 2.8-Å resolution. Superposition of four molecules in the asymmetric unit of the crystal and the comparison of the obtained structures with the known structures of the aIF2αγ and aIF2βγ heterodimers revealed high conformational flexibility in the α- and β-subunits. In fact, the full-sized aIF2 consists of a rigid central part, formed by the γ-subunit, domain 3 of the α-subunit, and the N-terminal α-helix of the β-subunit, and two mobile “wings,” formed by domains 1 and 2 of the α-subunit, the central part, and the zinc-binding domain of the β-subunit. High structural flexibility of the wings is probably required for interaction of aIF2 with the small ribosomal subunit. Comparative analysis of all known structures of the γ-subunit alone and within the heterodimers and heterotrimers in nucleotide-bound and nucleotide-free states shows that the conformations of switch 1 and switch 2 do not correlate with the assembly or nucleotide states of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号